如圖,⊙的半徑為3,兩條弦,交于點(diǎn),且, ,.
求證:△≌△.
利用相交弦定理來(lái)和相似三角形的性質(zhì)加以證明即可。
解析試題分析:證明:延長(zhǎng)交⊙與點(diǎn),, 2分
由相交弦定理得
, 6分
又,,
故,, 8分
所以,,
而,
所以△≌△. 10分
考點(diǎn):全等三角形
點(diǎn)評(píng):主要是考查了全等三角形的證明的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在中,是的中點(diǎn),是的中點(diǎn),的延長(zhǎng)線(xiàn)交于.
(Ⅰ)求的值;
(Ⅱ)若面積為,四邊形的面積為,求:的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,、、是圓上三點(diǎn),是的角平分線(xiàn),交圓于,過(guò)作圓的切線(xiàn)交的 延長(zhǎng)線(xiàn)于.
(Ⅰ)求證:;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,△內(nèi)接于⊙,,直線(xiàn)切⊙于點(diǎn),弦,相交于點(diǎn).
(Ⅰ)求證:△≌△;
(Ⅱ)若,求長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線(xiàn),點(diǎn)F在DG的延長(zhǎng)線(xiàn)上,且。求證:
(Ⅰ)D、E、C、F四點(diǎn)共圓; (Ⅱ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,的內(nèi)心為,分別是的中點(diǎn),,內(nèi)切圓分別與邊相切于;證明:三線(xiàn)共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
幾何證明選講如圖:已知圓上的弧=,過(guò)C點(diǎn)的圓的切線(xiàn)與BA的延長(zhǎng)線(xiàn)交于E點(diǎn)
證明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE×CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是以為直徑的上一點(diǎn),于點(diǎn),過(guò)點(diǎn)作的切線(xiàn),與的延長(zhǎng)線(xiàn)相交于點(diǎn)是的中點(diǎn),連結(jié)并延長(zhǎng)與相交于點(diǎn),延長(zhǎng)與的延長(zhǎng)線(xiàn)相交于點(diǎn).
(1)求證:;
(2)求證:是的切線(xiàn);
(3)若,且的半徑長(zhǎng)為,求和的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知圓:和定點(diǎn),由圓外一點(diǎn)向圓引切線(xiàn),切點(diǎn)為,且滿(mǎn)足.
(1)求實(shí)數(shù)間滿(mǎn)足的等量關(guān)系式;
(2)求面積的最小值;
(3)求的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com