如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線,點(diǎn)F在DG的延長線上,且。求證:
(Ⅰ)D、E、C、F四點(diǎn)共圓; (Ⅱ)
(Ⅰ)詳見解析;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)依據(jù)已知條件尋求出∠DGC、∠F、∠CAB+∠DBA的關(guān)系,借助對角互補(bǔ)證明D,E,C,F(xiàn)四點(diǎn)共圓;(Ⅱ)結(jié)合(Ⅰ)的結(jié)果進(jìn)一步得到點(diǎn)G是經(jīng)過D,E,C,F(xiàn)四點(diǎn)的圓的圓心,所以∠GCE=∠GEC,延長GE,繼而證明∠AEH+∠CAB=90°即可.
試題解析:(Ⅰ)如圖,連結(jié)OC,OD,則OC⊥CG,OD⊥DG,
設(shè)∠CAB=∠1,∠DBA=∠2,∠ACO=∠3,
則∠COB=2∠1,∠DOA=2∠2.
所以∠DGC=180°-∠DOC=2(∠1+∠2).
因?yàn)椤螪GC=2∠F,所以∠F=∠1+∠2.
又因?yàn)椤螪EC=∠AEB=180°-(∠1+∠2),
所以∠DEC+∠F=180°,所以D,E,C,F(xiàn)四點(diǎn)共圓.
(Ⅱ)延長GE交AB于H.
因?yàn)镚D=GC=GF,所以點(diǎn)G是經(jīng)過D,E,C,F(xiàn)四點(diǎn)的圓的圓心.
所以GE=GC,所以∠GCE=∠GEC.
又因?yàn)椤螱CE+∠3=90°,∠1=∠3,
所以∠GEC+∠3=90°,所以∠AEH+∠1=90°,
所以∠EHA=90°,即GE⊥AB.
考點(diǎn):1、四點(diǎn)共圓;2、圓的切線的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為半圓的直徑,,為半圓上一點(diǎn),過點(diǎn)作半圓的切線,過點(diǎn)作于,交圓于點(diǎn),.
(Ⅰ)求證:平分;
(Ⅱ)求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4—1:幾何證明選講 如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于D。
(Ⅰ)證明:DB=DC;
(Ⅱ)設(shè)圓的半徑為1,BC=,延長CE交AB于點(diǎn)F,求△BCF外接圓的半徑。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點(diǎn)P,過P作直線與⊙O分別交于E,F(xiàn)兩點(diǎn),連結(jié)AE,AF分別與CD交于G、H
(Ⅰ)設(shè)EF中點(diǎn)為,求證:O、、B、P四點(diǎn)共圓
(Ⅱ)求證:OG =OH.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知均在⊙O上,且為⊙O的直徑.
(1)求的值;
(2)若⊙O的半徑為,與交于點(diǎn),且、為弧的三等分點(diǎn),求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知與圓相切于點(diǎn),經(jīng)過點(diǎn)的割線交圓于點(diǎn),的平分線分別交于點(diǎn).
(1)證明:;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,在中,,平分交于點(diǎn),點(diǎn)在上,。
(I)求證:是的外接圓的切線;
(II)若,,求的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com