二項(xiàng)式(x+
m
x
6的展開(kāi)式中x2的系數(shù)為60,則正實(shí)數(shù)m=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于2,求出r的值,即可求得展開(kāi)式中x2的系數(shù),再根據(jù)展開(kāi)式中x2的系數(shù)為60,求得正實(shí)數(shù)m的值.
解答: 解:二項(xiàng)式(x+
m
x
6的展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
6
•mr•x6-2r,
令6-2r=2,求得r=2,∴展開(kāi)式中x2的系數(shù)為
C
2
6
•m2=60,求得正實(shí)數(shù)m=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是二次函數(shù),若f(0)=1,f(x+1)-f(x)=2x,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)y=f(x)對(duì)定義域內(nèi)任意的x,有f(x)=f(2-x),令函數(shù)F(x)=f(2x+1),你能寫(xiě)出F(x)滿(mǎn)足的一個(gè)類(lèi)似的等式嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定集合An={1,2,3,…,n},映射f:An→An,滿(mǎn)足以下條件:
①當(dāng)i,j∈An且i≠j時(shí),f(i)≠f(j);
②任取x∈An,若x+f(x)=7有K組解,則稱(chēng)映射f:An→An含K組優(yōu)質(zhì)數(shù),若映射f:A6→A6含3組優(yōu)質(zhì)數(shù).
則這樣的映射的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面α⊥平面β,直線(xiàn)a∥平面α,則直線(xiàn)a與平面β的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為正方體ABCD-A1B1C1D1對(duì)角線(xiàn)BD1上的一點(diǎn),且BP=λBD1(λ∈(0,1)).下面命題正確的為:
 
(寫(xiě)出所有正確結(jié)論的序號(hào)):
①A1D⊥C1P;     
②若BD1⊥平面PAC,則λ=
1
3
;
③若△PAC為鈍角三角形,則λ∈(0,
1
2
);
④若λ∈(0,
1
2
),則△PAC為銳角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}(n∈N*),其前n項(xiàng)和為Sn,給出下列四個(gè)命題:
①若{an}是等差數(shù)列,則三點(diǎn)(10,
S10
10
)、(100,
S100
100
)、(110,
S110
110
)共線(xiàn);
②若{an}是等差數(shù)列,且a1=-11,a3+a7=-6,則S1、S2、…、Sn這n個(gè)數(shù)中必然存在一個(gè)最大者;
③若{an}是等比數(shù)列,則Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比數(shù)列;
④若Sn+1=a1+qSn(其中常數(shù)a1q≠0),則{an}是等比數(shù)列;
⑤若等比數(shù)列{an}的公比是q(q是常數(shù)),且a1=1,則數(shù)列{an2}的前n項(xiàng)和Sn=
1-q2n
1-q2

其中正確命題的序號(hào)是①④.(將你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
2x2+x
log4(3x-1)
+
34x+2
的定義域?yàn)?div id="3frv7fr" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間直角坐標(biāo)系中,已知A(2,3,5),B(3,1,4),則A,B兩點(diǎn)間的距離為( 。
A、6
B、
6
C、
30
D、
42

查看答案和解析>>

同步練習(xí)冊(cè)答案