已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn)。
(1)試問在軸上是否存在不同于點(diǎn)的一點(diǎn),使得軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說明理由。
(2)若的面積為,求向量的夾角;

(1)存在T(1,0)(2) 

解析試題分析:(1)由題意知:拋物線方程為:          -1分
設(shè)
設(shè)直線代入


                     2分
假設(shè)存在滿足題意,則

                    5分
      存在T(1,0)              -6分
(2)(法一)

                         7分
設(shè)直線OA,OB的傾斜角分別為
       9分
設(shè)
    11分
                 12分
法二:
               7分
            9分
        11分
             12分
考點(diǎn):本題考查了拋物線的方程及直線與拋物線的關(guān)系
點(diǎn)評:解答拋物線綜合題時,應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長公式及韋達(dá)定理綜合思考,重視對稱思想、函數(shù)與方程思想、等價轉(zhuǎn)化思想的應(yīng)用。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,其左、右焦點(diǎn)分別為、,短軸長為,點(diǎn)在橢圓上,且滿足的周長為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),試問在x軸上是否存在一個定點(diǎn)M使恒為定值?若存在求出該定值及點(diǎn)M的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),其長軸、焦距和短軸的長的平方依次成等差數(shù)列.直線軸正半軸和軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合且滿足
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試證明:直線過定點(diǎn)并求此定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面上動點(diǎn)P()及兩個定點(diǎn)A(-2,0),B(2,0),直線PA、PB的斜率分別為、 且
(I)求動點(diǎn)P所在曲線C的方程。
(II)設(shè)直線與曲線C交于不同的兩點(diǎn)M、N,當(dāng)OM⊥ON時,求點(diǎn)O到直線的距離。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點(diǎn)。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點(diǎn),且,求點(diǎn)的坐標(biāo)。
(Ⅱ)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中O為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點(diǎn)AB,且線段AB的中點(diǎn)在圓上,求實數(shù)m的值。  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,短軸的一個端點(diǎn)到右焦點(diǎn)的距離為,直線交橢圓于不同的兩點(diǎn)。
(1)求橢圓的方程;
(2)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動點(diǎn),且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點(diǎn)P的軌跡加上MN兩點(diǎn)構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點(diǎn)Q (2,0) 斜率為的直線與曲線C交于不同的兩點(diǎn)AB,AB中點(diǎn)為R,直線OR (O為坐標(biāo)原點(diǎn))的斜率為,求證 為定值;
(3) 在(2)的條件下,設(shè),且,求y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)是橢圓的右焦點(diǎn),點(diǎn)分別是軸、
軸上的動點(diǎn),且滿足.若點(diǎn)滿足
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過點(diǎn)任作一直線與點(diǎn)的軌跡交于、兩點(diǎn),直線與直線分別交
于點(diǎn)、為坐標(biāo)原點(diǎn)),試判斷是否為定值?若是,求出這個定值;若不是,
請說明理由.

查看答案和解析>>

同步練習(xí)冊答案