已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.直線軸正半軸和軸分別交于點、,與橢圓分別交于點,各點均不重合且滿足
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試證明:直線過定點并求此定點.

(1) (2)直線過定點(1,0)

解析試題分析:解:(1)設(shè)橢圓方程為,焦距為2c,
由題意知 b=1,且,又
.
所以橢圓的方程為           (5)
(2) 由題意設(shè),設(shè)l方程為,

,由題意,∴                   7分
同理由 
,∴        (*)      8分
聯(lián)立
∴需         (**)
且有            (***)
(***)代入(*)得,∴,
由題意,∴(滿足(**)),
l方程為,過定點(1,0),即P為定點.                    (14)
考點:直線與橢圓的位置關(guān)系
點評:主要是考查了直線與橢圓的位置關(guān)系的應(yīng)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

過直線y=﹣1上的動點A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點.
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點是離心率為的橢圓上的一點,斜率為的直線交橢圓、兩點,且、三點不重合.
(1)求橢圓的方程;
(2)的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知F1、F2分別為橢圓C1的上、下焦點,其中F1也是拋物線C2的焦點,點A是曲線C1,C2在第二象限的交點,且

(Ⅰ)求橢圓1的方程;
(Ⅱ)已知P是橢圓C1上的動點,MN是圓C:的直徑,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為,判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).若以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為.
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 求直線被曲線所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的中心在原點,其上、下頂點分別為,點在直線上,點到橢圓的左焦點的距離為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上異于的任意一點,點軸上的射影為,的中點,直線交直線于點,的中點,試探究:在橢圓上運(yùn)動時,直線與圓:的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在坐標(biāo)原點,焦點為,點是點關(guān)于軸的對稱點,過點的直線交拋物線于兩點。
(1)試問在軸上是否存在不同于點的一點,使得軸所在的直線所成的銳角相等,若存在,求出定點的坐標(biāo),若不存在說明理由。
(2)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)動直線交橢圓、兩點,試問:在坐標(biāo)平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案