某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應數(shù)據(jù):
x24a68
y3040b5070
過定點(5,50),則:
(1)求出a,b的值,并畫出散點圖;
(2)求回歸直線方程;
(3)試預測廣告費支出為10百萬元時,銷售額多大?(
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:(1)根據(jù)表中所給的五組數(shù)據(jù),得到五個點的坐標,在平面直角坐標系中畫出散點圖.
(2)先求出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點求出a的值,寫出線性回歸方程.
(3)將x=10代入回歸直線方程求出y的值即為當廣告費支出10(百萬元)時的銷售額的估計值.
解答: 解:(1)
(2)
.
x
=5,
.
y
=50,
5
i=1
xi2
=145,
5
i=1
xiyi
=1380,
設回歸方程為y=bx+a
則b=6.5,a=17.5
故回歸方程為y=6.5x+17.5
(3)當x=10時,y=6.5×10+17.5=82.5,
所以當廣告費支出10(百萬元)時,銷售額約為82.5(百萬元).
點評:本題考查線性回歸方程的求法和應用,本題解題的關(guān)鍵是利用最小二乘法求出線性回歸方程的系數(shù),這是解答正確的主要環(huán)節(jié).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對一切實數(shù)x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=(a+1)f(x)-a[f(x+1)-x]在區(qū)間(-1,2)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象與x軸的交點中,相鄰兩個交點之間的距離為
π
2
,且圖象上一個最高點為M(
π
6
,3).
(1)求f(x)的解析式;
(2)先把函數(shù)y=f(x)的圖象向左平移
π
6
個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,試寫出函數(shù)y=g(x)的解析式.
(3)在(2)的條件下,若總存在x0∈[-
π
3
,
3
],使得不等式g(x0)+2≤log3m成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦點分別為F1和F2,A(0,-1)為橢圓的一個頂點,P是橢圓上任意一點,右焦點F2到直線x-y+2
2
=0的距離為3,且∠F1PF2為銳角,求點P的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+ax,(其中e為自然對數(shù)的底數(shù)),
(1)設曲線y=f(x)在x=1處的切線與直線(e-1)x-y=1平行,求a的值;
(2)若對于任意實數(shù)x≥0,f(x)>0恒成立,試確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*2
Sn
a
 
n
+2
和an的等比中項.
(1)證明:數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)證明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1;
(3)設集合M={m|m=2k,k∈Z,且1000≤k<1500,若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式2Sn-4200>
a
2
n
2
恒成立,試問:這樣的正整數(shù)m共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x|x-a|+b,x∈R.
(Ⅰ)當a=1,b=0時,解不等式:f(x)≤0;
(Ⅱ)若b<0,b為常數(shù)且對任何x∈[0,1]不等式f(x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是半徑為3的圓O的直徑,P是圓O上異于A,B的一點Q是線段AP上靠近A的三等分點,且
AQ
AB
=4,則
BQ
BP
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
3x,x≤0
,且關(guān)于x的方程f(x)+x-a=0有且只有一個實根,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案