【題目】已知函數(shù),曲線在點(diǎn)處的切線為,若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
【答案】解: (1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
當(dāng)x=1時,切線l的斜率為3,可得2a+b="0 " ①
當(dāng)x=時,y=f(x)有極值,則f′()=0,
可得4a+3b+4="0 " ②
由①②解得a=2,b=-4.
由于切點(diǎn)的橫坐標(biāo)為x=1,∴f(1)=4.
∴1+a+b+c=4.∴c=5………………………………….6分
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4,
令f′(x)=0,得x=-2,x=.
當(dāng)x變化時,y,y′的取值及變化如下表:
x | -3 | (-3,-2) | -2 | (-2,) | (,1) | 1 | |
+ | 0 | - | 0 | + | |||
y | 8 | 單調(diào)增遞 | 13 | 單調(diào)遞減 | 單調(diào)遞增 | 4 |
∴ y=f(x)在[-3,1]上的最大值為13,最小值為…………………….14分
【解析】試題分析:
(1)利用題意求得實(shí)數(shù)a,b,c的值可得函數(shù)f(x)的表達(dá)式為f(x)=x3+2x2-4x+5
(2)結(jié)合(1)的解析式和導(dǎo)函數(shù)研究原函數(shù)的性質(zhì)可得y=f(x)在[-3,1]上的最大值為13,最小值為 .
試題解析:
(1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
當(dāng)x=1時,切線l的斜率為3,可得2a+b=0;①
當(dāng)x=時,y=f(x)有極值,則f′=0,
可得4a+3b+4=0.②
由①②解得a=2,b=-4,
又切點(diǎn)的橫坐標(biāo)為x=1,∴f(1)=4.
∴1+a+b+c=4.∴c=5.
(2)由(1),得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2或x=,
∴f′(x)<0的解集為,即為f(x)的減區(qū)間.
[-3,-2)、是函數(shù)的增區(qū)間.
又f(-3)=8,f(-2)=13,f=,f(1)=4,
∴y=f(x)在[-3,1]上的最大值為13,最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光對物體的照度與光的強(qiáng)度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為均為正常數(shù)如圖,強(qiáng)度分別為8,1的兩個光源A,B之間的距離為10,物體P在連結(jié)兩光源的線段AB上不含A,若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數(shù),并指明其定義域;
當(dāng)物體P在線段AB上何處時,可使物體P受到A,B兩光源的總照度最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線于, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),動圓C經(jīng)過點(diǎn),且被y軸截得的弦長為2p,記動圓圓心C的軌跡為E.
Ⅰ求軌跡E的方程;
Ⅱ求證:在軌跡E上存在點(diǎn)A,B,使得為坐標(biāo)原點(diǎn)是以A為直角頂點(diǎn)的等腰直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上饒某購物中心在開業(yè)之后,為了解消費(fèi)者購物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在元的區(qū)間內(nèi)).
(1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計(jì)了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實(shí)數(shù)的值;
(2)設(shè),其導(dǎo)函數(shù)為,若的圖象交軸于兩點(diǎn)且,設(shè)線段的中點(diǎn)為,試問是否為的根?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)、,直線、相交于點(diǎn),且它們的斜率之積為,記動點(diǎn)的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在求出坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且是與2的等差中項(xiàng).?dāng)?shù)列中,,點(diǎn)在直線上.
(1)求和的值;
(2)求數(shù)列,的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com