已知橢圓C的中心在原點,焦點在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)設(shè)直線經(jīng)過點(0,1),且與橢圓C交于兩點,若,求直線的方程.

(1);(2).

解析試題分析:本題主要考查橢圓的標準方程和幾何性質(zhì)、直線的方程等基礎(chǔ)知識,考查用代數(shù)法研究圓錐曲線的性質(zhì),考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用橢圓的焦距、離心率求出基本量,寫出橢圓方程;第二問,由于直線經(jīng)過(0,1)點,所以先設(shè)出直線方程,與橢圓聯(lián)立,消參得到關(guān)于x的方程,先設(shè)出點坐標,通過方程得到兩根之和、兩根之積,再由,得出,聯(lián)立上述表達式得k的值,從而得到直線方程.
試題解析:(1)設(shè)橢圓方程為,
因為,所以,
所求橢圓方程為                          4分
(2)由題得直線的斜率存在,設(shè)直線方程為
則由,且
設(shè),則由 ..8分
,
所以消去
解得
所以直線的方程為,即  12分
考點:1.橢圓的標準方程;2.直線方程;3.韋達定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、為橢圓的左、右焦點,且點在橢圓上.
(1)求橢圓的方程;
(2)過的直線交橢圓兩點,則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的方程為,雙曲線的兩條漸近線為.過橢圓的右焦點作直線,使,又交于點,設(shè)與橢圓的兩個交點由上至下依次為、.

(1)若的夾角為,且雙曲線的焦距為,求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過定點M(2,0)且斜率不為0的直線交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得始終平分?若存在求出點坐標;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點,是常數(shù)),且動點軸的距離比到點的距離小.
(1)求動點的軌跡的方程;
(2)(i)已知點,若曲線上存在不同兩點滿足,求實數(shù)的取值范圍;
(ii)當(dāng)時,拋物線上是否存在異于、的點,使得經(jīng)過、三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心為直角坐標系的原點,焦點在軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓的動點,為過且垂直于軸的直線上的點,為橢圓的離心率),求點的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系中,已知中心在原點,離心率為的橢圓E的一個焦點為圓的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點,過P作兩條斜率之積為的直線,當(dāng)直線都與圓相切時,求P點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線,求曲線過點的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點的雙曲線的一個焦點是,一條漸近線的方程是。
(1)求雙曲線的方程;
(2)若以為斜率的直線與雙曲線相交于兩個不同的點,且線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案