已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓的動(dòng)點(diǎn),為過且垂直于軸的直線上的點(diǎn),為橢圓的離心率),求點(diǎn)的軌跡方程,并說明軌跡是什么曲線.

(1);(2)軌跡方程為軌跡是兩條平行于x軸的線段.

解析試題分析:(1)橢圓有四個(gè)(兩對(duì))頂點(diǎn),短軸的兩個(gè)頂點(diǎn)到焦點(diǎn)的距離相等,這里可見是長(zhǎng)軸的兩頂點(diǎn),于是有,可求得,以及橢圓方程;(2)動(dòng)點(diǎn)的運(yùn)動(dòng)是由點(diǎn)在橢圓上運(yùn)動(dòng)引起的,因此要求點(diǎn)的軌跡方程,我們采取動(dòng)點(diǎn)轉(zhuǎn)移法,借助于點(diǎn),就是設(shè)點(diǎn)坐標(biāo)為,動(dòng)點(diǎn)的坐標(biāo)為,想辦法用表示,然后把代入點(diǎn)所在的橢圓的方程,即可得動(dòng)點(diǎn)的軌跡方程,化簡(jiǎn)即可。
試題解析:(1)設(shè)橢圓長(zhǎng)半軸長(zhǎng)及分別為a,c,由已知得
{ 解得a=4,c=3,所以橢圓C的方程為
(2Ⅱ)設(shè)M(x,y),P(x,),其中由已知得
,故             ①
由點(diǎn)P在橢圓C上得  代入①式并化簡(jiǎn)得
所以點(diǎn)M的軌跡方程為軌跡是兩條平行于x軸的線段.
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)動(dòng)點(diǎn)轉(zhuǎn)移法求軌跡方程,軌跡。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn),,直線AG,BG相交于點(diǎn)G,且它們的斜率之積是
(Ⅰ)求點(diǎn)G的軌跡的方程;
(Ⅱ)圓上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn),直線PA交(Ⅰ)中的軌跡于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩點(diǎn),點(diǎn)在以、為焦點(diǎn)的橢圓上,且、構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且
. 求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)設(shè)直線經(jīng)過點(diǎn)(0,1),且與橢圓C交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,過點(diǎn)P(4,0)且不垂直于x軸直線與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線和⊙,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為

(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線過點(diǎn),且被圓截得的弦長(zhǎng)為,求直線的方程;
(2)設(shè)為平面上的點(diǎn),滿足:存在過點(diǎn)的無(wú)窮多對(duì)互相垂直的直線,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案