為了得到函數(shù)y=cos2x(x∈R)的圖象只需將函數(shù)y=cos(2x+
π
3
)(x∈R)的圖象( 。
A、向左平行移動
π
6
個單位長度
B、向右平行移動
π
6
個單位長度
C、向左平行移動
π
3
個單位長度
D、向右平行移動
π
3
個單位長度
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:將函數(shù)y=cos(2x+
π
3
)(x∈R)的圖象向右平行移動
π
6
個單位長度,可得函數(shù)y=cos[2(x-
π
6
)+
π
3
]=cos2x的圖象,
故選:B.
點(diǎn)評:本題主要考查函數(shù)y=Acos(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(110,120]內(nèi)的所有實數(shù)中,隨機(jī)抽取一個實數(shù)a,則這個實數(shù)a<113的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinα,cosα),
b
=(sin
π
4
,cos
π
4
),且
a
b
,則符合要求的α為(  )
A、
π
4
B、-
π
2
C、
4
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
),其導(dǎo)函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x-
π
3
B、f(x)=2sin(
1
2
x+
π
6
C、f(x)=sin(
1
2
x-
π
3
D、f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有四個關(guān)于三角函數(shù)的命題,其中所有真命題的序號是(  )
①存在x∈R,使sin2
x
2
+cos2
x
2
=
1
2

②存在x∈R,使sin(x-y)=sinx-siny
③存在x∈(0,π),使
1-cos2x
2
=sinx
④在△ABC中,A>B?sinA>sinB.
A、②③B、③④
C、②③④D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在R上單調(diào)遞減,且對于任意實數(shù)m,n,總有f(m+n)=f(m)•f(n),設(shè)A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,則a的取值范圍是( 。
A、-
3
≤a≤
3
B、-
3
≤a≤
3
且a≠0
C、0≤a≤
3
D、-
3
≤a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)f(x)=-
3
f(
π
2
-x)-sinx的圖象,只需將g(x)=sinx的圖象( 。
A、向左平移
π
6
個單位
B、向右平移
π
6
個單位
C、向左平移
π
3
個單位
D、向右平移
π
3
個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,
3i
2-i
=( 。
A、-
1
5
+
2
5
i
B、-
3
5
+
3
5
i
C、-
3
5
-
6
5
i
D、-
3
5
+
6
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在焦點(diǎn)為F1(5,0)和F2(-5,0),漸近線y=±
4
3
x的雙曲線上,且
PF1
PF2
=0,則S△PF1F2的值是( 。
A、32B、16C、18D、9

查看答案和解析>>

同步練習(xí)冊答案