設(shè)數(shù)列{an}中,a1=2,an+1=an+n+1,則通項(xiàng)an=
 
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:利用累加法即可求得答案.
解答: 解:∵an+1=an+n+1,
∴n≥2時(shí),a2-a1=2,a3-a2=3,…,an-an-1=n,
以上各式相加,得an-a1=
(n-1)(n+2)
2
,
an=
1
2
(n2+n+2)
,
又a1=2適合上式,∴an=
1
2
(n2+n+2)

故答案為:an=
1
2
(n2+n+2)
點(diǎn)評(píng):該題考查由數(shù)列遞推式求數(shù)列通項(xiàng),屬基礎(chǔ)題,累加法是求數(shù)列通項(xiàng)的基本方法,要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一高為H、滿缸水量為V0的魚缸的軸截面如圖所示,其底部碰了一個(gè)小洞,滿缸水從洞中流出,若魚缸水深為h時(shí)水的體積為V,則函數(shù)的大致圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b∈R,“a<b”是“2a<3b”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*),
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an
(Ⅱ)數(shù)列{bn}的通項(xiàng)公式bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若將函數(shù)f(x)=x5+7x4表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5為實(shí)數(shù).
(Ⅰ)求a4的值;
(Ⅱ)求(x-
a4
x2
6展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲工作室有1名高級(jí)工程師A1和3名工程師B1,B2,B3,乙工作室有2名高級(jí)工程師A2,A3和1名工程師B4,現(xiàn)要從甲工作室中選出2人,從乙工作室中選出1人支援外地建設(shè).
(Ⅰ)試問:一共有多少種不同的選法?請(qǐng)列出所有可能的選法;
(Ⅱ)求選出的3人均是工程師的概率:
(Ⅲ)求選出的3人中至少有1名高級(jí)工程師的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
(1)
1-2sin10°cos10°
sin10°-
1-sin210°

(2)
2
<α<2π,化簡(jiǎn)
1-cosα
1+cosα
+
1+cosα
1-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一走廊拐角處的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B,C兩點(diǎn),EF∥AB,GH∥CD且兩組平行墻壁間的走廊寬度都是1m.
(1)若水平放置的木棒MN的兩個(gè)端點(diǎn)M,N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點(diǎn)P,設(shè)∠CMN=θ,若θ=
π
4
,試求出木棒MN的長(zhǎng)度a;
(2)若一根水平放置的木棒能通過該走廊拐角處,請(qǐng)問木棒長(zhǎng)度能否大于a,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:x2+y2-2x-2y-2=0,直線L過點(diǎn)P(2,3)且與圓M交于A,B兩點(diǎn),且|AB|=2
3
,求直線L的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案