【題目】已知橢圓的離心率為,長軸長為

(1)求橢圓的方程;

(2)點是以長軸為直徑的圓上一點,圓在點處的切線交直線于點,求證:過點且垂直于直線的直線過橢圓的右焦點.

【答案】(1);(2)見解析

【解析】試題分析:由題意得解得,由此解得,即可得到橢圓的方程;

(2)由題意知,圓的方程為.設(shè), .由,

因為,所以

當(dāng)時, ,直線的方程為,直線過橢圓的右焦點

當(dāng)時,直線的方程為,整理得,直線過橢圓的右焦點

試題解析:

(1)由題意得解得

所以

所以橢圓的方程為

(2)由題意知,圓的方程為

設(shè), ,

,

,

,

因為,所以

當(dāng)時, ,直線的方程為,直線過橢圓的右焦點

當(dāng)時,直線的方程為,

,即,直線過橢圓的右焦點

綜上所述,直線過橢圓的右焦點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1B1C12,∠A1B1C190°,AA14BB13,CC12,求:

1)該幾何體的體積.

2)截面ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C對應(yīng)的邊分別是ab,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)。

(1)若f(x)的圖象與g(x)的圖象所在兩條曲線的一個公共點在y軸上,且在該點處兩條曲線的切線互相垂直,求b和c的值。

(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說明理由;

(3)若b=c=0,證明:對任意給定的正數(shù)a,總存在正數(shù)m,使得當(dāng)x時,

恒有f(x)>g(x)成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)有物理、化學(xué)、生物三個學(xué)科競賽各設(shè)冠軍一名,現(xiàn)有人參賽可報任意學(xué)科并且所報學(xué)科數(shù)不限,則最終決出冠軍的結(jié)果共有多少種可能?

(2)有個數(shù),從中取個數(shù)排成一個五位數(shù),要求奇數(shù)位上只能是奇數(shù),則共可排成多少個五位數(shù)?

(3)有個數(shù),從中取個數(shù)排成一個五位數(shù),要求奇數(shù)只在奇數(shù)位上,則共可排成多少個五位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P是直線l3x+4y+8=0上的動點,PAPB是圓Cx2+y2-2x-2y+1=0的兩條切線(A,B為切點),則四邊形PACB面積的最小值( 。

A. B. C. 2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長為4,E為棱CC1的中點,點M在正方形BCC1B1內(nèi)運動,且直線AM∥平面A1DE,則動點M的軌跡長度為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形中,,,如圖1.把沿翻折,使得平面平面,如圖2

(Ⅰ)求證:;

(Ⅱ)若點為線段中點,求點到平面的距離;

(Ⅲ)在線段上是否存在點,使得與平面所成角為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司對營銷人員有如下規(guī)定:

①年銷售額 (萬元)在8萬元以下,沒有獎金;

②年銷售額 (萬元), 時,獎金為萬元,且, ,且年銷售額越大,獎金越多;

③年銷售額超過64萬元,按年銷售額的10%發(fā)獎金.

(1)求獎金y關(guān)于x的函數(shù)解析式;

(2)若某營銷人員爭取獎金 (萬元),則年銷售額 (萬元)在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊答案