【題目】如圖是一個(gè)以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1B1C12,∠A1B1C190°,AA14,BB13,CC12,求:

1)該幾何體的體積.

2)截面ABC的面積.

【答案】162

【解析】

1)以同樣大的幾何體進(jìn)行補(bǔ)形,得一直三棱柱,計(jì)算直三棱柱的體積,可求出該幾何體的體積;

2)求出△ABC的各邊長,判斷△ABC為等腰三角形,再計(jì)算截面△ABC的面積.

1)以同樣大的幾何體,進(jìn)行補(bǔ)形,可得一直三棱柱,其底面為△A1B1C1,高為4+26,

∴所求幾何體的體積為V2×2×66

2)△ABC中,ABBC,AC2,

∴△ABC為等腰三角形,底邊AC的高為:h

∴截面ABC的面積為SABC2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過坐標(biāo)原點(diǎn)且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線軸所成的銳角為,直線軸所成的銳角為,判斷的大小關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】探究函數(shù)的圖像時(shí),列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.02

4.04

4.3

5

5.8

7.57

觀察表中y值隨x值的變化情況,完成以下的問題:

1)函數(shù)的遞減區(qū)間是 ,遞增區(qū)間是

2)若對(duì)任意的恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電子產(chǎn)品的不斷更新完善,更多的電子產(chǎn)品逐步走入大家的世界,給大家?guī)砹素S富多彩的生活,但也帶來了一些負(fù)面的影響,某公司隨即抽取人對(duì)某電子產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問卷調(diào)查,并對(duì)參與調(diào)查的人中的年齡層次以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

歲以下

歲或歲以上

總計(jì)

認(rèn)為某電子產(chǎn)品對(duì)生活有益

認(rèn)為某電子產(chǎn)品對(duì)生活無益

總計(jì)

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為電子產(chǎn)品的態(tài)度與年齡有關(guān)系?

(2)為了答謝參與問卷調(diào)查的人員,該公司對(duì)參與本次問卷調(diào)查的人員進(jìn)行抽獎(jiǎng)活動(dòng),獎(jiǎng)金額以及發(fā)放的概率如下:

獎(jiǎng)金額

元(謝謝支持)

概率

現(xiàn)在甲、乙兩人參與了抽獎(jiǎng)活動(dòng),記兩人獲得的獎(jiǎng)金總金額為,求的分布列和數(shù)學(xué)期望.

參與公式:

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,直線交橢圓兩點(diǎn),橢圓的右頂點(diǎn)為,且滿足.

(1)求橢圓的方程;

(2)若直線與橢圓交于不同兩點(diǎn)、,且定點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )

A. B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元.

(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:

日均派送單數(shù)

52

54

56

58

60

頻數(shù)(天)

20

30

20

20

10

回答下列問題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.

(參考數(shù)據(jù): , , , , , , ,

【答案】(1);(2)見解析

【解析】試題分析:1甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,

②不同的角度可以有不同的答案

試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為: ,

乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:

,

(2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則

,

乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則

②、答案一:

由以上的計(jì)算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日薪收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.

答案二:

由以上的計(jì)算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應(yīng)選擇乙方案.

型】解答
結(jié)束】
20

【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,且離心率為, 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.

(1)求橢圓的方程;

(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長直線, 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,在四棱錐中, , 為棱的中點(diǎn), .

(1)證明: 平面

(2)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,長軸長為

(1)求橢圓的方程;

(2)點(diǎn)是以長軸為直徑的圓上一點(diǎn),圓在點(diǎn)處的切線交直線于點(diǎn),求證:過點(diǎn)且垂直于直線的直線過橢圓的右焦點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案