如圖,長方形ABCD形狀的空地,AB=100m,BC=80m,現(xiàn)決定在該空地上規(guī)劃出一塊矩形CGPH地面學生公寓,要求一邊落在CD 上,但不得越過文物保護區(qū)△AEF的EF.△AEF的邊AE=30m,AF=20m.
(1)要使矩形學生公寓CGPH的面積大于6000m2,CG的長度應在什么范圍?
(2)長度CG和寬度CH分別為多少米時矩形學生公寓CGPH的面積最大?最大值是多少平方米?
考點:基本不等式在最值問題中的應用
專題:應用題,函數(shù)的性質及應用
分析:設CG=x,矩形CGPH面積為y,作EN⊥PH于點N,則
EN
40
=
x-140
60
,EN=
2x-280
3
,y=x-
760-2x
3
=
1
6
-2x(760-2x)運用均值不等式求解最值.
解答: 解  設CG=x,矩形CGPH面積為y,
作EN⊥PH于點N,則
EN
40
=
x-140
60
,
EN=
2x-280
3

∴HC=160-
2x-280
3
=
760-2x
3
 

1
6
760
2
2=
72200
3

當2x=760-2x,x=190(m)即CG長為190m時,最大面積為
72200
3
(m2
點評:本題考察了函數(shù)在實際問題中的應用,結合均值不等式求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若不等式x2+3x>ax-4對于滿足0≤x≤1的實數(shù)x恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F(0,1),一動圓過點F且與圓x2+(y+1)2=8內切.
(Ⅰ)求動圓圓心的軌跡C的方程;
(Ⅱ)設點A(a,0),點P為曲線C上任一點,求點A到點P距離的最大值d(用a表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,小圓圈表示網絡的接點,接點之間的連接表示它們有網線相連.相連標注的數(shù)字表示該段網線單位時間內可以通過的最大信息量.現(xiàn)在從接點A向接點B傳遞信息,信息可以分開沿不同線路同時傳遞,則單位時間內從接點A向接點B傳遞的最大信息量為( 。
A、11B、10C、8D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=8,a4=2,且滿足:an+2-2an+1+an=0(n∈N*),
(1)求數(shù)列{an}的通項公式;
(2)設bn=
1
n(12-an)
(n∈N*),求證:Sn=b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2-a2x+m(a>0)
(1)若a=1時函數(shù)f(x)有三個互不相同的零點,求實數(shù)m的取值范圍;
(2)若對任意的a∈[3,6],x∈[-2,2],不等式f(x)≤1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx.
(1)求函數(shù)y=f(x)的單調區(qū)間;
(2)是否存在正數(shù)x1,x2,且|x1-x2|≥1,使得f(x1)=f(x2).若存在,求出x1,x2的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系有兩點P(1,cosx),Q(cosx,1),其中x∈[-
π
4
,
π
4
];
(1)求向量
OP
OQ
的夾角θ的余弦用x表示的函數(shù)f(x);
(2)求題(1)中f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在(0,
π
2
)上的函數(shù)f(x)的導函數(shù)為f′(x),且對任意x∈(0,
π
2
),都有f′(x)sinx<f(x)cosx,則不等式f(x)<2f(
π
6
)sinx的解集為
 

查看答案和解析>>

同步練習冊答案