精英家教網 > 高中數學 > 題目詳情

【題目】如圖,二面角α﹣l﹣β的大小為60°,A∈β,C∈α,且AB、CD都垂直于棱l,分別交棱l于B、D.已知BD=1,AB=2,CD=3,則AC=

【答案】2
【解析】解:由題意知 , ,即 =0, =0,< , >=60°,
= + + ,
∴| |2=( + + 2=| |2+| |2+| |2+2 +2 +2 =| |2+| |2+| |2+2 ,
∵BD=1,AB=2,CD=3,
∴| |2=| |2+| |2+| |2+2
=4+9+1+2×3×2cos120°,
=14﹣6=8,
則| |= =2
即AC=2 ,
所以答案是:2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需要增加投入100元,最大月產量是400臺.已知總收益滿足函數 ,其中x是儀器的月產量(單位:臺).
(1)將利潤y(單位:元)表示為月產量x(單位:臺)的函數;
(2)當月產量為何值時,公司所獲得利潤最大?最大利潤為多少?(總收益=總成本+利潤).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調函數,求實數b的范圍;
(2)若對任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的單調區(qū)間;
(2)若函數f(x)的定義域為R,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在空間直角坐標系中有直三棱柱ABC﹣A1B1C1 , CA=2CB,CC1=3CB,則直線BC1與直線AB1夾角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=ax(a>0且a≠1)與函數y=(a﹣1)x2﹣2x﹣1在同一坐標系內的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在[﹣2,2]上的奇函數,且f(2)=3,若對任意的m,n∈[﹣2,2],m+n≠0,都有 >0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求實數a的取值范圍;
(2)若不等式f(x)≤(5﹣2a)t+1對任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集為(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}滿足a3=7,a5+a7=26,數列{an}的前n項和Sn . (Ⅰ)求an及Sn;
(Ⅱ)令bn= (n∈N*),求數列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案