精英家教網 > 高中數學 > 題目詳情

【題目】已知函數g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調函數,求實數b的范圍;
(2)若對任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求實數a的取值范圍.

【答案】
(1)解:由f(x)=x3+x2+bx,得f′(x)=3x2+2x+b,

∵f(x)在區(qū)間[1,2]上不是單調函數,

∴f′(x)在[1,2]上最大值大于0,最小值小于0

f′(x)=3 +b﹣ ,

∴﹣16<b<﹣5;


(2)解:由g(x)≥﹣x2+(a+2)x,得(x﹣lnx)a≤x2﹣2x.

∵x∈[1,e],∴l(xiāng)nx≤1≤x,且等號不能同時取,

∴l(xiāng)nx<x,即x﹣lnx>0,

∴a≤ 恒成立,即a≤( min

令t(x)= ,x∈[1,e],求導得,t′(x)=

當x∈[1,e]時,x﹣1≥0,lnx≤1,x+2﹣lnx>0,從而t′(x)≥0,

∴t(x)在[1,e]上為增函數,tmin(x)=t(1)=﹣1,

∴a≤﹣1.


【解析】(1)求出函數的導數,根據f′(x)在[1,2]上最大值大于0,最小值小于0,得到關于b的不等式組,解出即可;(2)由g(x)≥﹣x2+(a+2)x分離出參數a后,轉化為求函數最值,利用導數可求最值.
【考點精析】通過靈活運用利用導數研究函數的單調性和函數的最大(小)值與導數,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減;求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(x∈R)的部分對應值如表:

x

﹣3

﹣2

﹣1

0

1

2

3

4

y

﹣6

0

4

6

6

4

0

﹣6

則一元二次不等式ax2+bx+c>0的解集是(
A.{x|x<﹣2,或x>3}
B.{x|x≤﹣2,或x≥3}
C.{x|﹣2<x<3}
D.{x|﹣2≤x≤3}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示.若將運動員成績由好到差編號為1﹣35號,再用系統抽樣方法從中抽取7人,則其中成績在區(qū)間[139,151]上的運動員人數是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}的前n項和為Sn , 2Sn﹣nan=n(n∈N*),若S20=﹣360,則a2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】集合A={x|a﹣1<x<2a+1},B={x|0<x<1},若A∩B=,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】請閱讀下列材料:若兩個正實數a1 , a2滿足a12+a22=1,那么a1+a2 .證明:構造函數f(x)=(x﹣a12+(x﹣a22=2x2﹣2(a1+a2)x+1,因為對一切實數x,恒有f(x)≥0,所以△≤0,從而得4(a1+a22﹣8≤0,所以a1+a2 .根據上述證明方法,若n個正實數滿足a12+a22+…+an2=1時,你能得到的結論為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖給出的四個對應關系,其中構成映射的是( )

A.(1)(2)
B.(1)(4)
C.(1)(2)(4)
D.(3)(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,二面角α﹣l﹣β的大小為60°,A∈β,C∈α,且AB、CD都垂直于棱l,分別交棱l于B、D.已知BD=1,AB=2,CD=3,則AC=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調性,并加以證明;
(3)寫出f(x)的值域.

查看答案和解析>>

同步練習冊答案