【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項和Sn . (Ⅰ)求an及Sn;
(Ⅱ)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn .
【答案】解:(I)設等差數(shù)列{an}的公差為d,∵a3=7,a5+a7=26, ∴ ,解得a1=3,d=2.
∴an=3+2(n﹣1)=2n+1.
∴數(shù)列{an}的前n項和Sn= =n2+2n.
(Ⅱ)bn= = = ,
∴數(shù)列{bn}的前n項和Tn= + +…+ = =
【解析】(I)設等差數(shù)列{an}的公差為d,由a3=7,a5+a7=26,可得 ,解出利用等差數(shù)列的前n項和公式即可得出;(Ⅱ)bn= = = ,利用“裂項求和”即可得出.
【考點精析】根據(jù)題目的已知條件,利用等差數(shù)列的通項公式(及其變式)和等差數(shù)列的前n項和公式的相關知識可以得到問題的答案,需要掌握通項公式:或;前n項和公式:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,二面角α﹣l﹣β的大小為60°,A∈β,C∈α,且AB、CD都垂直于棱l,分別交棱l于B、D.已知BD=1,AB=2,CD=3,則AC= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長時間用手機上網(wǎng)嚴重影響著學生的身體健康,某校為了解A、B兩班學生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周手機上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(Ⅰ)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計,哪個班的學生平均上網(wǎng)時間較長;
(Ⅱ)從A班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為b,求a>b的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題說法正確的是( )
A.命題p:“?x∈R,sinx+cosx= ”,則?p是真命題
B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0“的否定是:“?x∈R,x2+x+1<0”
D.“a>l”是“y=logax(a>0且a≠1)在(0,+∞)上為增函數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣(a+2)x+lnx. (Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為﹣2,求a的取值范圍;
(Ⅲ)若對任意x1 , x2∈(0,+∞),當x1≠x2時有 >0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)所學知識完成題目:
(1)求函數(shù)f(x)=2x+4 的值域;
(2)求函數(shù)f(x)= 的值域.
(3)函數(shù)f(x)=x2﹣2x﹣3,x∈(﹣1,4]的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=2|x﹣4|﹣logax+2無零點,則實數(shù)a的取值范圍為;
若函數(shù)f(x)=|2x﹣2|﹣b有兩個零點,則實數(shù)b的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的三邊長分別為a、b、c,△ABC的面積為S,內切圓半徑為r,則r= ;類比這個結論可知:四面體P﹣ABC的四個面的面積分別為S1、S2、S3、S4 , 內切球的半徑為r,四面體P﹣ABC的體積為V,則r= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com