【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,是曲線上任意一點(diǎn),求點(diǎn)到曲線的距離的最大值.
【答案】(1)的普通方程為:,的直角坐標(biāo)方程為:;(2).
【解析】
(1)直接消參可得曲線的普通方程,整理可得,將代入即可求得曲線的直角坐標(biāo)方程,問(wèn)題得解。
(2)利用伸縮變換求得曲線:,利用橢圓的參數(shù)方程可設(shè),結(jié)合點(diǎn)到直線距離公式及輔助角公式即可解決問(wèn)題。
解:(1)∵,消參可得曲線的普通方程為:,
∵,∴,
又∵,代入可得:.
故曲線的直角坐標(biāo)方程為:.
(2)曲線:,經(jīng)過(guò)伸縮變換得到曲線的方程為:,
∴曲線的方程為:.
設(shè),根據(jù)點(diǎn)到直線的距離公式可得
(其中),
∴點(diǎn)到曲線的距離的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,分別為、的中點(diǎn).
(1)證明:平面;
(2)已知與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線L: y=x+m與拋物線y2=8x交于A、B兩點(diǎn)(異于原點(diǎn)),
(1)若直線L過(guò)拋物線焦點(diǎn),求線段 |AB|的長(zhǎng)度;
(2)若OA⊥OB ,求m的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)當(dāng)時(shí), 在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(1)證明:平面;
(2)線段上是否存在點(diǎn),使與所成角的余弦值為?若存在,找到所有符合要求的點(diǎn),并求的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),若數(shù)列滿足:對(duì)所有,,且當(dāng)時(shí),,則稱為“數(shù)列”,設(shè)R,函數(shù),數(shù)列滿足,().
(1)若,而是數(shù)列,求的值;
(2)設(shè),證明:存在,使得是數(shù)列,但對(duì)任意,都不是數(shù)列;
(3)設(shè),證明:對(duì)任意,都存在,使得是數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷(xiāo)售額不斷增長(zhǎng),最近個(gè)季度的銷(xiāo)售額數(shù)據(jù)統(tǒng)計(jì)如下表(其中表示年第一季度,以此類(lèi)推):
季度 | |||||
季度編號(hào)x | |||||
銷(xiāo)售額y(百萬(wàn)元) |
(1)公司市場(chǎng)部從中任選個(gè)季度的數(shù)據(jù)進(jìn)行對(duì)比分析,求這個(gè)季度的銷(xiāo)售額都超過(guò)千萬(wàn)元的概率;
(2)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司的銷(xiāo)售額.
附:線性回歸方程:其中,
參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com