【題目】設(shè)函數(shù), .
(1)當(dāng)時(shí), 在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1);(2)(]
【解析】試題分析:(1)由 ,由 在( 上恒成立,得到 ,即 在(1,+∞)上恒成立,構(gòu)造函數(shù),求出函數(shù)的最小值,即可得到實(shí)數(shù) 的取值范圍;
(2)當(dāng) 時(shí),易得函數(shù) 的解析式,由方程的根與對(duì)應(yīng)函數(shù)零點(diǎn)的關(guān)系,易轉(zhuǎn)化為 在上恰有兩個(gè)相異實(shí)根,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,然后根據(jù)零點(diǎn)存在定理,構(gòu)造關(guān)于 的不等式組,解不等式組即可得到答案.
試題解析:(1)當(dāng)時(shí),由得,
∵,∴,∴有在上恒成立,
令,由得,
當(dāng),∴在上為減函數(shù),在上為增函數(shù),
∴,∴實(shí)數(shù)的取值范圍為;
(2)當(dāng)時(shí),函數(shù),
在上恰有兩個(gè)不同的零點(diǎn),即在上恰有兩個(gè)不同的零點(diǎn),
令,則,
當(dāng), ;當(dāng), ,
∴在上單減,在上單增, ,
又, 如圖所示,所以實(shí)數(shù)的取值范圍為(]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ax2﹣(2a+1)x+a+1對(duì)于任意a∈[﹣1,1],都有f(x)<0,則實(shí)數(shù)x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣e﹣x+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)若,且對(duì)任意的, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4sin2( + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化簡(jiǎn)f(x);
(2)常數(shù)ω>0,若函數(shù)y=f(ωx)在區(qū)間 上是增函數(shù),求ω的取值范圍;
(3)若函數(shù)g(x)= 在 的最大值為2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= cos4x+2sinxcosx﹣ sin4x.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的最大值、最小值以及取得最值時(shí)的x值;
(2)設(shè)g(x)=3﹣2m+mcos(2x﹣ )(m>0),若對(duì)于任意x1∈[0, ],都存在x2∈[0, ],使得f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0 時(shí),有 .
(1)求證:f(x)在[﹣1,1]上為增函數(shù);
(2)求不等式 的解集;
(3)若 對(duì)所有 恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷f(x)在[2,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com