考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由2S
n=3a
n-3,可得當(dāng)n≥2時(shí),2a
n=2S
n-2S
n-1,化為a
n=3a
n-1,當(dāng)n=1時(shí),2a
1=2S
1=3a
1-3,解得a
1=3.利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)
bn==
=
-,利用“裂項(xiàng)求和”即可得出.
解答:
解:(1)∵2S
n=3a
n-3,∴當(dāng)n≥2時(shí),2a
n=2S
n-2S
n-1=(3a
n-3)-(3a
n-1-3),化為a
n=3a
n-1,
當(dāng)n=1時(shí),2a
1=2S
1=3a
1-3,解得a
1=3.∴數(shù)列{a
n}是等比數(shù)列,∴a
n=3
n.
(2)
bn==
=
-,
其前項(xiàng)和為T
n=
(1-)+(-)+…+
(-)=1-
=
.
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用、等比數(shù)列的通項(xiàng)公式、對數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題.