【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據(jù):

x

4

5

7

8

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).

【答案】(1) 散點圖見解析.為正相關(guān)

(2) .

(3)7.

【解析】

分析:(1)根據(jù)表中數(shù)據(jù),畫出散點圖即可;
(2)根據(jù)公式,計算線性回歸方程的系數(shù)即可;
(3)由線性回歸方程預(yù)測x=9時,y的平均值為7

詳解:

 (1)散點圖如圖所示.為正相關(guān).

xiyi=4×2+5×3+7×5+8×6=106.=6,=4,

x=42+52+72+82=154,

=1,=4-6=-2,

故線性回歸方程為xx-2.

(3)由線性回歸方程可以預(yù)測,燃放煙花爆竹的天數(shù)為9的霧霾天數(shù)為7.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個單位長度,再向下平移個單位,得到函數(shù)的圖像。

(1)當時,若方程恰好有兩個不同的根,求的取值范圍及的值;

(2)令,若對任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱柱ABCA1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,FF1分別是AC,A1C1的中點.

求證:(1)平面AB1F1平面C1BF;

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1 ,曲線C2 (θ為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系. (Ⅰ)求曲線C1 , C2的極坐標方程;
(Ⅱ)曲線C3 (t為參數(shù),t>0, )分別交C1 , C2于A,B兩點,當α取何值時, 取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過點,且,線段交圓的交點為點,關(guān)于軸的對稱點.

(1)求直線的方程;

(2)已知是圓上不同的兩點,且,試證明直線的斜率為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)有下面四個命題
p1:若復(fù)數(shù)z滿足 ∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復(fù)數(shù)z∈R,則 ∈R.
其中的真命題為(  )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標原點為極點, 軸的正半軸為極軸的極坐標系中,點的極坐標為, 直線的極坐標方程為.

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點, 為線段的中點.求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當時,正數(shù)滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】研究發(fā)現(xiàn),北京 PM 2.5 的重要來源有土壤塵、燃煤、生物質(zhì)燃燒、汽車尾氣與垃圾焚燒、工業(yè)污染和二次無機氣溶膠,其中燃煤的平均貢獻占比約為 18%.為實現(xiàn)“節(jié)能減排”,還人民“碧水藍天”,北京市推行“煤改電”工程,采用空氣源熱泵作為冬天供暖.進入冬季以來,該市居民用電量逐漸增加,為保證居民取暖,市供電部門對該市 100 戶居民冬季(按 120 天計算)取暖用電量(單位:度)進行統(tǒng)計分析,得到居民冬季取暖用電量的頻率分布直方圖如圖所示.

(1)求頻率分布直方圖中的值;

(2)從這 100 戶居民中隨機抽取 1 戶進行深度調(diào)查,求這戶居民冬季取暖用電量在[3300,3400]的概率;

(3)在用電量為[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四組居民中,用分層抽樣的方法抽取 34 戶居民進行調(diào)查,則應(yīng)從用電量在[3200,3250)的居民中抽取多少戶?

查看答案和解析>>

同步練習冊答案