【題目】如圖所示,在三棱柱ABCA1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點(diǎn).

求證:(1)平面AB1F1平面C1BF;

(2)平面AB1F1⊥平面ACC1A1.

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)要證,只需證、,只需證、,而四邊形、四邊形皆為平行四邊形,所以得證;(2)要證,只需證,只需證、,其中易知可得,A1B1C1為正三角形可得,從而得證.

試題解析:(1)連接,在三棱柱中,由為棱的中點(diǎn),所以,四邊形是平行四邊形,所以,,.又在矩形中可得,, ,則,,所以

2)因?yàn)?/span>, ,所以,又因?yàn)?/span>A1B1C1為正三角形, 的中點(diǎn),所以,又,所以,因?yàn)?/span>,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 是正方形, 平面, , , 分別是, , 的中點(diǎn).

)求四棱錐的體積.

)求證:平面平面

)在線段上確定一點(diǎn),使平面,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)棱A1A⊥底面ABC,AC=1,AA1=2,∠BAC=90°,若直線AB1與直線A1C的夾角的余弦值是 ,則棱AB的長度是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)變量ξ的分布列如表,其中a,b,c成等差數(shù)列.若E(ξ)= ,則D(ξ)=(

ξ

1

2

3

P

a

b

c


A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等腰梯形中(如圖1),, , 邊上一點(diǎn),且,沿折起,使平面平面如圖2.

(1)證明:平面平面;

(2)試在棱上確定一點(diǎn),使截面把幾何體分成的兩部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,AFADa,GEF的中點(diǎn).

(1)求證:平面AGC⊥平面BGC;

(2)GB與平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯(cuò)誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,3),B(-1,0),C(3,0),求點(diǎn)D的坐標(biāo),使四邊形ABCD為直角梯形(A,B,C,D按逆時(shí)針方向排列).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列例子中隨機(jī)變量ξ服從二項(xiàng)分布的有________.

隨機(jī)變量ξ表示重復(fù)拋擲一枚骰子n次中出現(xiàn)點(diǎn)數(shù)是3的倍數(shù)的次數(shù);

某射手擊中目標(biāo)的概率為0.9,從開始射擊到擊中目標(biāo)所需的射擊次數(shù)ξ;

有一批產(chǎn)品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)M<N;

有一批產(chǎn)品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù).

查看答案和解析>>

同步練習(xí)冊答案