【題目】設有下面四個命題
p1:若復數(shù)z滿足 ∈R,則z∈R;
p2:若復數(shù)z滿足z2∈R,則z∈R;
p3:若復數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復數(shù)z∈R,則 ∈R.
其中的真命題為( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
【答案】B
【解析】解:若復數(shù)z滿足 ∈R,則z∈R,故命題p1為真命題;
p2:復數(shù)z=i滿足z2=﹣1∈R,則zR,故命題p2為假命題;
p3:若復數(shù)z1=i,z2=2i滿足z1z2∈R,但z1≠ ,故命題p3為假命題;
p4:若復數(shù)z∈R,則 =z∈R,故命題p4為真命題.
故選:B.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應用和復數(shù)的定義的相關知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系;形如的數(shù)叫做復數(shù),和分別叫它的實部和虛部.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點,若|AB|的值是不等于0的常數(shù),則稱曲線 y=f(x),y=g(x)為“平行曲線”,設f(x)=ex﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+∞)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點唯一,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于圓周率π,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設計下面的實驗來估計π的值:先請200名同學,每人隨機寫下一個都小于1 的正實數(shù)對(x,y);再統(tǒng)計兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(x,y)的個數(shù)m;最后再根據(jù)統(tǒng)計數(shù)m來估計π的值.假如統(tǒng)計結(jié)果是m=56,那么可以估計π≈ . (用分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知多面體EABCDF的底面ABCD是邊長為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且 .
(Ⅰ)記線段BC的中點為K,在平面ABCD內(nèi)過點K作一條直線與平面ECF平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線EB與平面ECF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據(jù):
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心在拋物線上,圓過原點且與拋物線的準線相切.
(1)求該拋物線的方程;
(2)過拋物線焦點的直線交拋物線于, 兩點,分別在點, 處作拋物線的兩條切線交于點,求三角形面積的最小值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(Ⅰ)求不等式f(x)≥1的解集;
(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在海岸A處,發(fā)現(xiàn)北偏東方向,距離A為 n mile的B處有一艘走私船,在A處北偏西方向,距離A為2 n mile的C處有一艘緝私艇奉命以n mile / h的速度追截走私船,此時,走私船正以10 n mile / h的速度從B處向北偏東方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時間。(本題解題過程中請不要使用計算器,以保證數(shù)據(jù)的相對準確和計算的方便)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com