【題目】(本小題滿分12分)

已知橢圓的左、右頂點分別為A,B,其離心率,點為橢圓上的一個動點,面積的最大值是

(1)求橢圓的方程;

(2)若過橢圓右頂點的直線與橢圓的另一個交點為,線段的垂直平分線與軸交于點,當時,求點的坐標.

【答案】(1)(2)當時,,當時,

【解析】

(1)由題意可知解方程即可得解;

(2)設(shè)直線的方程為,由直線與橢圓聯(lián)立得由根與系數(shù)的關(guān)系可得,從而得中點的坐標,進而得的垂直平分線方程,令x=0可得,再由,用坐標表示即可解.

(1)由題意可知解得,,

所以橢圓方程為.

(2)由(1)知,設(shè)直線的方程為,,

代入橢圓方程,

整理得,

所以,則,

所以中點的坐標為,

則直線的垂直平分線方程為,得

,即

化簡得,

解得

故當時,,當時,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的S是(

A.10
B.15
C.20
D.35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有5人進入到一列有7節(jié)車廂的地鐵中,分別求下列情況的概率用數(shù)字作最終答案

恰好有5節(jié)車廂各有一人;

恰好有2節(jié)不相鄰的空車廂;

恰好有3節(jié)車廂有人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項和S10=100.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列 的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+bx﹣alnx.
(1)若x=2是函數(shù)f(x)的極值點,1和x0是函數(shù)f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n.
(2)若對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一只口袋中裝有形狀、大小都相同的10個小球,其中有紅球2個,黑球3個,白球5個.

從中1次隨機摸出2個球,求2個球顏色相同的概率;

從中1次隨機摸出3個球,記白球的個數(shù)為X,求隨機變量X的概率分布和數(shù)學期望;

每次從袋中隨機摸出1個球,記下顏色后放回,連續(xù)取3次,求取到紅球的次數(shù)大于取到白球的次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣ cos2x.
(1)求f(x)的最小周期和最小值;
(2)將函數(shù)f(x)的圖象上每一點的橫坐標伸長到原來的兩倍,縱坐標不變,得到函數(shù)g(x)的圖象.當x∈ 時,求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求適合下列條件的雙曲線的方程:

(1) 虛軸長為12,離心率為;

(2) 焦點在x軸上,頂點間距離為6,漸近線方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.

(1)求圓M的方程;

(2)設(shè)點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.

查看答案和解析>>

同步練習冊答案