【題目】求適合下列條件的雙曲線的方程:
(1) 虛軸長(zhǎng)為12,離心率為;
(2) 焦點(diǎn)在x軸上,頂點(diǎn)間距離為6,漸近線方程為.
【答案】(1)或;(2)
【解析】
(1)設(shè)出雙曲線的標(biāo)準(zhǔn)方程,根據(jù)題干得到2b=12,e=,再由c2=a2+b2得到a,b,c的值,進(jìn)而得到方程;(2)設(shè)出以為漸近線的雙曲線方程,根據(jù)頂點(diǎn)的距離得到參數(shù)值,進(jìn)而得到方程.
(1)設(shè)雙曲線的標(biāo)準(zhǔn)方程為-=1或-=1(a>0,b>0).
由題意知2b=12,=,且c2=a2+b2,
∴b=6,c=10,a=8,
∴雙曲線的標(biāo)準(zhǔn)方程為-=1或-=1.
(2)設(shè)以y=±x為漸近線的雙曲線方程為-=λ(λ>0).
a2=4λ,∴2a=2=6λ=;
∴雙曲線的標(biāo)準(zhǔn)方程為-=1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,,,平面ABCD,E為PD的中點(diǎn),.
求四棱錐的體積V;
若F為PC的中點(diǎn),求證平面AEF;
求證平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知橢圓:的左、右頂點(diǎn)分別為A,B,其離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若過(guò)橢圓右頂點(diǎn)的直線與橢圓的另一個(gè)交點(diǎn)為,線段的垂直平分線與軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,,是的動(dòng)點(diǎn),過(guò)點(diǎn)作的垂線,線段的中垂線交于點(diǎn),的軌跡為.
(1)求軌跡的方程;
(2)過(guò)且與坐標(biāo)軸不垂直的直線交曲線于兩點(diǎn),若以線段為直徑的圓與直線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an﹣1,其中n∈N* .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn= ,求數(shù)列{bn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m, n是兩條不同的直線,是三個(gè)不同的平面, 給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號(hào)是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正三棱柱的所有棱長(zhǎng)都相等,分別為的中點(diǎn).現(xiàn)有下列四個(gè)結(jié)論:
:; :;
:平面; :異面直線與所成角的余弦值為.
其中正確的結(jié)論是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設(shè),直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢圓M的另一個(gè)交點(diǎn)為D.若C,D和點(diǎn) 共線,求k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點(diǎn),N為BC邊上一點(diǎn),且CN= BC,將△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M為EF中點(diǎn).
(1)求證:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com