精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=x2+bx﹣alnx.
(1)若x=2是函數f(x)的極值點,1和x0是函數f(x)的兩個不同零點,且x0∈(n,n+1),n∈N,求n.
(2)若對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e為自然對數的底數),使得f(x)<0成立,求實數a的取值范圍.

【答案】
(1)解: ,∵x=2是函數f(x)的極值點,∴

∵1是函數f(x)的零點,得f(1)=1+b=0,

,解得a=6,b=﹣1.

∴f(x)=x2﹣x﹣6lnx,

= ,x∈(0,+∞),得x>2;

令f′(x)<0得0<x<2,

所以f(x)在(0,2)上單調遞減;在(2,+∞)上單調遞增.

故函數f(x)至多有兩個零點,其中1∈(0,2),x0∈(2,+∞),

因為f(2)<f(1)=0,f(3)=6(1﹣ln3)<0,f(4)=6(2﹣ln4)= 0,

所以x0∈(3,4),故n=3.


(2)解:令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],則g(b)為關于b的一次函數且為增函數,

根據題意,對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e 為自然對數的底數),使得f(x)<0成立,

則在x∈(1,e)上 ,有解,

令h(x)=x2﹣x﹣alnx,只需存在x0∈(1,e)使得h(x0)<0即可,

由于 ,

令φ(x)=2x2﹣x﹣a,x∈(1,e),φ'(x)=4x﹣1>0,

∴φ(x)在(1,e)上單調遞增,φ(x)>φ(1)=1﹣a,

①當1﹣a≥0,即a≤1時,φ(x)>0,即h′(x)>0,h(x)在(1,e)上單調遞增,∴h(x)>h(1)=0,不符合題意.

②當1﹣a<0,即a>1時,φ(1)=1﹣a<0,φ(e)=2e2﹣e﹣a

若a≥2e2﹣e>1,則φ(e)<0,所以在(1,e)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上單調遞減,

∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合題意.

若2e2﹣e>a>1,則φ(e)>0,∴在(1,e)上一定存在實數m,使得φ(m)=0,

∴在(1,m)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上單調遞減,

∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合題意.

綜上所述,當a>1時,對任意b∈[﹣2,﹣1],都存在x∈(1,e)(e 為自然對數的底數),使得f(x)<0成立


【解析】(1)先求導得到 ,由 ,f(1)=1+b=0,得到a與b的值,再令導數大于0,或小于0,得到函數的單調區(qū)間,再由零點存在性定理得到得到x0∈(3,4),進而得到n的值;(2)令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],問題轉化為在x∈(1,e)上g(b)max=g(﹣1)<0有解即可,亦即只需存在x0∈(1,e)使得x2﹣x﹣alnx<0即可,連續(xù)利用導函數,然后分別對1﹣a≥0,1﹣a<0,看是否存在x0∈(1,e)使得h(x0)<h(1)=0,進而得到結論.
【考點精析】本題主要考查了函數的極值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若函數在定義域內單調遞增,求實數 的取值范圍,

(2)當時,關于的方程在[1,4]上恰有兩個不相等的實數根,

求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],滿足a﹣ex+1+x<0成立,求實數a的取值范圍.
(2)當x≥0時,f(x)≥(t﹣1)x恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位組織職工去某地參觀學習,需包車前往,甲車隊說:“如果領隊買一張全票,其余人可享受7折優(yōu)惠。”乙車隊說:“你們屬于團體票,按原價的7.5折優(yōu)惠!边@兩個車隊的原價、車型都是一樣的,試根據單位去的人數比較兩車隊的收費哪家更優(yōu)惠。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,一根水平放置的長方體枕木的安全負荷與它的厚度d的平方和寬度a的乘積成正比,與它的長度l的平方成反比.

(1)在a>d>0的條件下,將此枕木翻轉90°(即寬度變?yōu)榱撕穸龋,枕木的安全負荷會發(fā)生變化嗎?變大還是變小?
(2)現有一根橫截面為半圓(半圓的半徑為R= )的柱形木材,用它截取成橫截面為長方形的枕木,其長度即為枕木規(guī)定的長度l,問橫截面如何截取,可使安全負荷最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是共享經濟的一種新形態(tài),一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:車輛)之間的關系”進行調查研究,在調查過程中進行了統(tǒng)計,得出相關數據見下表:

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務:

①完成下表(計算結果精確到0.1)(備注: , 稱為相應于點的殘差(也叫隨機誤差));

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較 的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放,根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入—成本).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是共享經濟的一種新形態(tài),一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:車輛)之間的關系”進行調查研究,在調查過程中進行了統(tǒng)計,得出相關數據見下表:

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務:

①完成下表(計算結果精確到0.1)(備注: , 稱為相應于點的殘差(也叫隨機誤差));

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較, 的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放,根據市場調查,這個城市投放8千輛時,該公司平均一輛單一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入—成本).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)判斷函數的單調性;

(Ⅱ)求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定點,定直線,動點到點的距離與到直線的距離之比等于.

(1)求動點的軌跡的方程;

(2)設軌跡軸負半軸交于點,過點作不與軸重合的直線交軌跡于兩點,直線分別交直線于點.試問:在軸上是否存在定點,使得?若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案