分析 (1)分別在△ABD與△BCD中,由余弦定理可得:BD2=22+32-2×2×3×cos∠BAD,BD2=22+12-2×2×1×cos∠BCD,又cos∠BAD=cos(π-∠BCD)=-cos∠BCD.即可得出.
(2)四邊形ABCD的面積S=S△ABD+S△BCD.
解答 解:(1)分別在△ABD與△BCD中,由余弦定理可得:BD2=22+32-2×2×3×cos∠BAD,
BD2=22+12-2×2×1×cos∠BCD,又cos∠BAD=cos(π-∠BCD)=-cos∠BCD.
∴cos∠BAD=$\frac{1}{2}$.∴∠BAD=$\frac{π}{3}$.
BD2=13-12×$\frac{1}{2}$=7,解得BD=$\sqrt{7}$.
(2)四邊形ABCD的面積S=S△ABD+S△BCD=$\frac{1}{2}×2×3×sin\frac{π}{3}$+$\frac{1}{2}×2×1×sin\frac{2π}{3}$=2$\sqrt{3}$.
點評 本題考查了解三角形、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分不必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,0] | C. | (1,2) | D. | (-∞,1-$\sqrt{3}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com