已知函數(shù)f(x)=3x.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.

(1)log3(1+)
(2)f(x)=3x在(0,+∞)上單調(diào)遞增
(3)[-4,+∞)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元。為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(a≠0)滿足,為偶函數(shù),且x=-2是函數(shù)的一個零點.又>0).
(1)求函數(shù)的解析式;
(2)若關(guān)于x 的方程上有解,求實數(shù)的取值范圍;
(3)令,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=xm且f(4)=.
(1)求m的值;
(2)判定f(x)的奇偶性;
(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點,焦點在軸上的橢圓的離心率為,橢圓上異于長軸頂點的任意點與左右兩焦點、構(gòu)成的三角形中面積的最大值為.
(1)求橢圓的標準方程;
(2)已知點,連接與橢圓的另一交點記為,若與橢圓相切時、不重合,連接與橢圓的另一交點記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)定義在上,對任意的,且.
(1)求,并證明:;
(2)若單調(diào),且.設(shè)向量,對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數(shù)x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數(shù)g(x)=f(x)-mx (x∈R)是單調(diào)函數(shù),求證:m≤0或m≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校要建一個面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個3米的進出口(如圖).設(shè)矩形的長為米,鋼筋網(wǎng)的總長度為米.

(1)列出的函數(shù)關(guān)系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最小?
(3)若由于地形限制,該球場的長和寬都不能超過25米,問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最?

查看答案和解析>>

同步練習(xí)冊答案