(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時).
(I) 函數(shù)v(x)的表達(dá)式
(II) 當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大值,最大值約為3333輛/小時.
解析試題分析:(I)根據(jù)題意,函數(shù)v(x)表達(dá)式為分段函數(shù)的形式,關(guān)鍵在于求函數(shù)v(x)在20≤x≤200時的表達(dá)式,根據(jù)一次函數(shù)表達(dá)式的形式,用待定系數(shù)法可求得;
(II)先在區(qū)間(0,20]上,函數(shù)f(x)為增函數(shù),得最大值為f(20)=1200,然后在區(qū)間[20,200]上用基本不等式求出函數(shù)f(x)的最大值,用基本不等式取等號的條件求出相應(yīng)的x值,兩個區(qū)間內(nèi)較大的最大值即為函數(shù)在區(qū)間(0,200]上的最大值.
解:(I) 由題意:當(dāng)0≤x≤20時,v(x)=60;當(dāng)20<x≤200時,設(shè)v(x)=ax+b
再由已知得,解得
故函數(shù)v(x)的表達(dá)式為
(II)依題并由(I)可得
當(dāng)0≤x<20時,f(x)為增函數(shù),故當(dāng)x=20時,其最大值為60×20=1200
當(dāng)20≤x≤200時,
當(dāng)且僅當(dāng)x=200﹣x,即x=100時,等號成立.
所以,當(dāng)x=100時,f(x)在區(qū)間(20,200]上取得最大值.
綜上所述,當(dāng)x=100時,f(x)在區(qū)間[0,200]上取得最大值為,
即當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大值,最大值約為3333輛/小時.
答:(I) 函數(shù)v(x)的表達(dá)式
(II) 當(dāng)車流密度為100輛/千米時,車流量可以達(dá)到最大值,最大值約為3333輛/小時.
點評:本題主要考查函數(shù)、最值等基礎(chǔ)知識,同時考查運用數(shù)學(xué)知識解決實際問題的能力,屬于中等題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由長方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬分別為4m和10m(如圖所示).
(1)若設(shè)休閑區(qū)的長和寬的比,求公園ABCD所占面積S關(guān)于x的函數(shù)解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬應(yīng)如何設(shè)計?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一種密英文的明文(真實文)按字母分解,其中英文的a,b,c, ,z的26個字母(不分大小寫),依次對應(yīng)1,2,3, ,26這26個自然數(shù),見如下表格:
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足對任意的恒有,且當(dāng)時,.
(1)求的值;
(2)判斷的單調(diào)性
(3)若,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點的橫坐標(biāo)是函數(shù)f(x)的不動點,且A,B兩點關(guān)于直線y=kx+對稱,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=3x-.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某加油站擬造如圖所示的鐵皮儲油罐(不計厚度,長度單位:米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(為圓柱的高,為球的半徑,).假設(shè)該儲油罐的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為千元,半球形部分每平方米建造費用為3千元.設(shè)該儲油罐的建造費用為千元.
(1)寫出關(guān)于的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該儲油罐的建造費用最小時的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若在定義域存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com