【題目】如圖,已知多面體的底面是邊長為2的菱形,底面,,且.
(1)證明:平面;
(2)若直線與平面所成的角為,求二面角的大小.
科目:高中數(shù)學 來源: 題型:
【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標準是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.
(Ⅰ)求甲乙兩人所付的車費相同的概率;
(Ⅱ)設甲乙兩人所付的車費之和為隨機變量求的分布列及數(shù)學期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知直線l過點,它的一個方向向量為.
①求直線l的方程;
②一組直線,,,,,都與直線l平行,它們到直線l的距離依次為d,,,,,(),且直線恰好經過原點,試用n表示d的關系式,并求出直線的方程(用n、i表示);
(2)在坐標平面上,是否存在一個含有無窮多條直線,,,,的直線簇,使它同時滿足以下三個條件:①點;②,其中是直線的斜率,和分別為直線在x軸和y軸上的截距;③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的長軸長為4,焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)過動點的直線交軸與點,交于點 (在第一象限),且是線段的中點.過點作軸的垂線交于另一點,延長交于點.
(ⅰ)設直線的斜率分別為,證明為定值;
(ⅱ)求直線的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點為,是橢圓上半部分的動點,連接和長軸的左右兩個端點所得兩直線交正半軸于兩點(點在的上方或重合).
(1)當面積最大時,求橢圓的方程;
(2)當時,在軸上是否存在點使得為定值,若存在,求點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(多選題)下列說法正確的是( )
A.橢圓1上任意一點(非左右頂點)與左右頂點連線的斜率乘積為
B.過雙曲線1焦點的弦中最短弦長為
C.拋物線y2=2px上兩點A(x1,y1).B(x2,y2),則弦AB經過拋物線焦點的充要條件為x1x2
D.若直線與圓錐曲線有一個公共點,則該直線和圓錐曲線相切
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學為調研學生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數(shù)據,將分數(shù)以10為組距分成6組: , , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:
定義學生對餐廳評價的“滿意度指數(shù)”如下:
分數(shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在, 兩家餐廳都用過餐的學生中隨機抽取1人進行調查,試估計其對餐廳評價的“滿意度指數(shù)”比對餐廳評價的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《九章算術》中記載了有關特殊幾何體的定義:陽馬指底面為矩形,一側棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側棱垂直于底面的三棱柱.
(1)某塹堵的三視圖,如圖1,網格中的每個小正方形的邊長為1,求該塹堵的體積;
(2)在塹堵中,如圖2,,若,當陽馬的體積最大時,求二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com