【題目】如圖,已知正方體的棱長(zhǎng)為1.
正方體中哪些棱所在的直線與直線是異面直線?
若M,N分別是 ,的中點(diǎn),求異面直線MN與BC所成角的大。
【答案】(1)見(jiàn)解析; (2).
【解析】
利用列舉法能求出直線是異面直線的棱所在直線.
,N分別是 ,的中點(diǎn),以D為原點(diǎn),DA為x軸,DC為y軸,為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線MN與BC所成角的大。
正方體中,
直線是異面直線的棱所在直線有:
AD,,CD,,,,共6條.
,N分別是,的中點(diǎn),
以D為原點(diǎn),DA為x軸,DC為y軸,為z軸,建立空間直角坐標(biāo)系,
則0,,1,,1,,
,,1,,1,,
,0,,
設(shè)異面直線MN與BC所成角的大小為,
則,
,
異面直線MN與BC所成角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)和非零實(shí)數(shù),若兩條不同的直線、均過(guò)點(diǎn),且斜率之積為,則稱直線、是一組“共軛線對(duì)”,如直線和是一組“共軛線對(duì)”,其中是坐標(biāo)原點(diǎn).
(1)已知、是一組“共軛線對(duì)”,且知直線,求直線的方程;
(2)如圖,已知點(diǎn)、點(diǎn)和點(diǎn)分別是三條傾斜角為銳角的直線、、上的點(diǎn)(、、與、、均不重合),且直線、是“共軛線對(duì)”,直線、是“共軛線對(duì)”,直線、是“共軛線對(duì)”,求點(diǎn)的坐標(biāo);
(3)已知點(diǎn),直線、是“共軛線對(duì)”,當(dāng)的斜率變化時(shí),求原點(diǎn)到直線、的距離之積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店為迎接端午節(jié),推出兩款粽子:花生粽和肉粽.為調(diào)查這兩款粽子的受歡迎程度,店員連續(xù)10天記錄了這兩種粽子的銷(xiāo)售量,如下表表示(其中銷(xiāo)售單位:個(gè))
天數(shù) 銷(xiāo)售量 天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
花生粽 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 | 100 |
肉粽 | 88 | 97 | 98 | 95 | 101 | 98 | 103 | 106 | 103 | 111 | 100 |
(1)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖:
(2)統(tǒng)計(jì)學(xué)知識(shí),請(qǐng)?jiān)u述哪款粽子更受歡迎;
(3)求肉粽銷(xiāo)售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第15天肉粽的銷(xiāo)售量(回歸方程系數(shù)精確到0.1)
參考數(shù)據(jù):,參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于和,為棱上的點(diǎn),.
(1)若為棱的中點(diǎn),求證:平面;
(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是
(1)命題“,”的否定是“,”;
(2)l為直線,,為兩個(gè)不同的平面,若,,則;
(3)給定命題p,q,若“為真命題”,則是假命題;
(4)“”是“”的充分不必要條件.
A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,雙曲線:經(jīng)過(guò)點(diǎn),其中一條近線的方程為,橢圓:與雙曲線有相同的焦點(diǎn)橢圓的左焦點(diǎn),左頂點(diǎn)和上頂點(diǎn)分別為F,A,B,且點(diǎn)F到直線AB的距離為.
求雙曲線的方程;
求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的菱形,底面,,且.
(1)證明:平面;
(2)若直線與平面所成的角為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論在上的單調(diào)性;
(2)令,當(dāng)時(shí),證明:對(duì),使.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸x、y的交點(diǎn)為O,夾角為,與x軸、y軸正向同向的單位向量分別是,,由平面向量基本定理,對(duì)于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對(duì),使得,我們把叫做點(diǎn)P在斜坐標(biāo)系xOy中的坐標(biāo)(以下各點(diǎn)的坐標(biāo)都指在斜坐標(biāo)系xOy中的坐標(biāo))
(1)若,為單位向量,且與的夾角為120°,求點(diǎn)P的坐標(biāo);
(2)若,點(diǎn)P的坐標(biāo)為,求向量與的夾角;
(3)若,直線l經(jīng)過(guò)點(diǎn),求原點(diǎn)O到直線l的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com