【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費(fèi)標(biāo)準(zhǔn)是:每車使用不超過1小時(shí)(包含1小時(shí))是免費(fèi)的,超過1小時(shí)的部分每小時(shí)收費(fèi)1元(不足1小時(shí)的部分按1小時(shí)計(jì)算,例如:騎行2.5小時(shí)收費(fèi)2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時(shí)還車的概率分別為1小時(shí)以上且不超過2小時(shí)還車的概率分別為兩人用車時(shí)間都不會(huì)超過3小時(shí).

(Ⅰ)求甲乙兩人所付的車費(fèi)相同的概率;

)設(shè)甲乙兩人所付的車費(fèi)之和為隨機(jī)變量的分布列及數(shù)學(xué)期望

【答案】(Ⅰ)見解析;(Ⅱ)見解析.

【解析】試題分析:1)同題意可知所付費(fèi)用相同即為0,2,4元,即相互獨(dú)立事件同時(shí)發(fā)生的概率。(2)甲乙兩個(gè)所付費(fèi)用之和為 可為0,2,4,6,8, 分清楚每個(gè)情況分成多少種互斥事件,再根據(jù)相互獨(dú)立事件同時(shí)發(fā)生求得每一類概率。

試題解析:(Ⅰ)所付費(fèi)用相同即為0,2,4.

設(shè)付0元為

2元為

4元為

)設(shè)甲乙兩個(gè)所付費(fèi)用之和為 可為0,2,4,6,8,

隨機(jī)變量的分布列是:

數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設(shè)分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】倫敦眼坐落在英國倫敦泰晤士河畔,是世界上首座觀景摩天輪,又稱千禧之輪,該摩天輪的半徑為6(單位:),游客在乘坐艙升到上半空鳥瞰倫敦建筑,倫敦眼與建筑之間的距離12(單位:),游客在乘坐艙看建筑的視角為.

1)當(dāng)乘坐艙在倫敦眼的最高點(diǎn)時(shí),視角,求建筑的高度;

2)當(dāng)游客在乘坐艙看建筑的視角時(shí),拍攝效果最好.若在倫敦眼上可以拍攝到效果最好的照片,求建筑的最低高度.

(說明:為了便于計(jì)算,數(shù)據(jù)與實(shí)際距離有誤差,倫敦眼的實(shí)際高度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角A,B,C的對(duì)邊為a,b,c,現(xiàn)給出以下四個(gè)命題:

當(dāng),,時(shí),滿足條件的三角形共有1個(gè);

若三角形ab57,這個(gè)三角形的最大角是;

如果,那么的形狀是直角三角形;

,,,則方向的投影為

以上命題中所有正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司用、兩種型號(hào)的車輛承擔(dān)甲、乙兩地的長途客運(yùn)業(yè)務(wù),每車每天往返一次.、兩種型號(hào)的車輛的載客量分別是32人和48人,從甲地到乙地的營運(yùn)成本依次為1500元/輛和2000元/輛.公司擬組建一個(gè)不超過21輛車的車隊(duì),并要求種型號(hào)的車不多于種型號(hào)的車5輛.若每天從甲地運(yùn)送到乙地的旅客不少于800人,為使公司從甲地到乙地的營運(yùn)成本最小,應(yīng)配備兩種型號(hào)的車各多少輛?并求出最小營運(yùn)成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場親子游樂場由于經(jīng)營管理不善突然倒閉.在進(jìn)行資產(chǎn)清算時(shí)發(fā)現(xiàn)有3000名客戶辦理的充值會(huì)員卡上還有余額.為了了解客戶充值卡上的余額情況,從中抽取了300名客戶的充值卡余額進(jìn)行統(tǒng)計(jì).其中余額分組區(qū)間為,,,其頻率分布直方圖如圖所示,請(qǐng)你解答下列問題:

(1)求的值;

(2)求余額不低于元的客戶大約為多少人?

(3)根據(jù)頻率分布直方圖,估計(jì)客戶人均損失多少?(用組中值代替各組數(shù)據(jù)的平均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)處的切線方程;

(2)當(dāng)時(shí),求上的最大值;

(3)求證:的極大值小于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中, ,的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】針對(duì)“中學(xué)生追星問題”,某校團(tuán)委對(duì)“學(xué)生性別和中學(xué)生追星是否有關(guān)”作了一次調(diào)查,其中女生人數(shù)是男生人數(shù)的,男生追星的人數(shù)占男生人數(shù)的,女生追星的人數(shù)占女生人數(shù)的.若有的把握認(rèn)為是否追星和性別有關(guān),則男生至少有( )

參考數(shù)據(jù)及公式如下:

A. 12B. 11C. 10D. 18

查看答案和解析>>

同步練習(xí)冊答案