化簡:sin100°(1+
3
tan10°)=
 
考點:同角三角函數(shù)基本關系的運用,運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:同角三角函數(shù)的基本關系,兩角和的正弦公式,誘導公式,把要求的式子化為最簡形式,從而求得結果.
解答: 解:sin100°(1+
3
tan10°)=
sin100°(cos10°+
3
sin10°)
cos10°
=
2sin100°sin(30°+10°)
cos10°
=
2sin80°sin40°
cos10°
=2sin40°,
故答案為:2sin40°.
點評:本題考查同角三角函數(shù)的基本關系,兩角和的正弦公式,誘導公式的應用,把要求的式子化簡即可,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

心理學研究表明,學生在課堂上各時段的接受能力不同.上課開始時,學生的興趣高昂,接受能力漸強,隨后有一段不太長的時間,學生的接受能力保持較理想的狀態(tài);漸漸地學生的注意力開始分散,接受能力漸弱并趨于穩(wěn)定.設上課開始x分鐘時,學生的接受能力為f(x)(f(x)值越大,表示接受能力越強),f(x)與x的函數(shù)關系為:
f(x)=
-0.1x2+2.6x+44,0<x≤10
60,10<x≤15
-3x+105,15<x≤25
30,25<x≤40

(1)開講后多少分鐘,學生的接受能力最強?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學生的接受能力的大;
(3)若一個數(shù)學難題,需要56的接受能力(即f(x)≥56)以及12分鐘時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講述完這個難題?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:5x+1=3x2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1所示,E是矩形ABCD的CD邊的中點,且AD=2,AB=4,連AE,將△ADE沿AE翻折(如圖2),使平面ADE⊥平面ABCE,F(xiàn)是BD中點,連CF.

(Ⅰ)求證:CF∥平面ADE;
(Ⅱ)求證:AD⊥平面DBE;
(Ⅲ)求四棱錐D-ABCE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0且b>0)的兩個焦點,P為雙曲線C上一點,且∠F1PF2=60°.若△PF1F2的面積為9
3
,則b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知∠α的終邊經過點P(-x,-6),且sinα=-
12
13
,則實數(shù)x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間不共線的四個點可確定
 
個平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
,
c
滿足|
a
|=|
b
|=
a
b
=2,(
a
-
c
)•(
b
-2
c
)=0,則|
b
-
c
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算
2
0
|x-1|dx=
 

查看答案和解析>>

同步練習冊答案