已知∠α的終邊經(jīng)過點P(-x,-6),且sinα=-
12
13
,則實數(shù)x=
 
考點:任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:直接利用三角函數(shù)的定義,求解即可.
解答: 解:∠α的終邊經(jīng)過點P(-x,-6),且sinα=-
12
13
,
所以
-6
x2+36
=-
12
13

解得x=±
5
3

故答案為:±
5
3
點評:本題考查三角函數(shù)的定義,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)a>0,f(x)=
x
x-a
,g(x)=
xex
x-a
,求曲線y=f(x)與y=g(x)在x=0處的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x∈R|x2-(a-1)x+b=0,a、b∈R},集合B={x|x2-bx-a=1,x∈R},若2013∈A,-1∈A,試用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
,滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin100°(1+
3
tan10°)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(1)當a=1時,求曲線f(x)在x=1處的切線方程;
(2)當a=
1
3
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈[1,2],?x1∈[0,1],使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知(b+c):(c+a):(a+b)=8:9:10,則sinA:sinB:sinC=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方形ABCD的邊長為1,點M,N分別在線段AB,AD上.若3|MN|2+|CM|2+|CN|2=
9
2
,則|AM|+|AN|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)q(x)與函數(shù)f(x)=x2-4x+3,x∈[1,4]的定義域、值域都相同,那么,函數(shù)q(x)的解析式可以是
 

查看答案和解析>>

同步練習冊答案