3.已知實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$目標(biāo)函數(shù)z=2log4y-log2x,則z的最大值為1.

分析 先畫出滿足不等式組$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$的平面區(qū)域,然后分析z=2log4y-log2x的幾何意義,進(jìn)而給出z的取值范圍.

解答 解:實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$平面區(qū)域,如下圖所示:
∵目標(biāo)函數(shù)z=2log4y-log2x=log2$\frac{y}{x}$,其中$\frac{y}{x}$表示區(qū)域內(nèi)點(diǎn)P與O(0,0)點(diǎn)連線的斜率,由$\left\{\begin{array}{l}{y=2}\\{x+2y-5=0}\end{array}\right.$,解得A(1,2)
又∵當(dāng)點(diǎn)P在A時(shí),即當(dāng)x=1,y=2時(shí),$\frac{y}{x}$取得最大值,z最大,最大值為z=1,
故答案為:1.

點(diǎn)評(píng) 平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點(diǎn)的坐標(biāo),是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.把$-\frac{1999π}{5}$表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ的值是$\frac{π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)P(-1,$\frac{\sqrt{2}}{2}$).
(1)求橢圓C的方程;
(2)直線AB:y=k(x+1)交橢圓C于A、B兩點(diǎn),交直線l:x=-2于點(diǎn)M,設(shè)直線PA、PB、PM的斜率依次為k1、k2、k3,問k1、k3、k2是否成等差數(shù)列,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數(shù)恰好是數(shù)列{an}的前n項(xiàng)和Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足${b_n}=\frac{{{2^{a_n}}}}{{({{2^{a_n}}-1})({{2^{{a_{n+1}}}}-1})}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某學(xué)校上午安排上四節(jié)課,每節(jié)課時(shí)間為40分鐘,第一節(jié)課上課時(shí)間為8:00~8:40,課間休息10分鐘.某學(xué)生因故遲到,若他在9:10~10:00之間到達(dá)教室,則他聽第二節(jié)課的時(shí)間不少于10分鐘的概率為( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.2017高考特別強(qiáng)調(diào)了要增加對(duì)數(shù)學(xué)文化的考查,為此某校高三年級(jí)特命制了一套與數(shù)學(xué)文化有關(guān)的專題訓(xùn)練卷(文、理科試卷滿分均為100分),并對(duì)整個(gè)高三年級(jí)的學(xué)生進(jìn)行了測(cè)試.現(xiàn)從這些學(xué)生中隨機(jī)抽取了50名學(xué)生的成績,按照成績?yōu)閇50,60),[60,70),…,[90,100]分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).
(1)求頻率分布直方圖中的x的值,并估計(jì)所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)若高三年級(jí)共有2000名學(xué)生,試估計(jì)高三學(xué)生中這次測(cè)試成績不低于70分的人數(shù);
(3)若在樣本中,利用分層抽樣的方法從成績不低于70分的三組學(xué)生中抽取6人,再從這6人中隨機(jī)抽取3人參加這次考試的考后分析會(huì),試求[80,90),[90,100]兩組中至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某保險(xiǎn)公司針對(duì)一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金.保險(xiǎn)公司把企業(yè)的所有崗位共分為A、B、C三類工種,從事三類工種的人數(shù)分布比例如圖,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付頻率).
工種類別ABC
賠付頻率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
對(duì)于A、B、C三類工種職工每人每年保費(fèi)分別為a元,a元,b元,出險(xiǎn)后的賠償金額分別為100萬元,100萬元,50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.
(Ⅰ)若保險(xiǎn)公司要求利潤的期望不低于保費(fèi)的20%,試確定保費(fèi)a、b所要滿足的條件;
(Ⅱ)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇;
方案1:企業(yè)不與保險(xiǎn)公司合作,企業(yè)自行拿出與保險(xiǎn)提供的等額的賠償金額賠付給出險(xiǎn)職工;
方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的60%,職工個(gè)人負(fù)責(zé)保費(fèi)的40%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付.
若企業(yè)選擇方案2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費(fèi)a、b所要滿足的條件,并判斷企業(yè)是否可與保險(xiǎn)公司合作.(若企業(yè)選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險(xiǎn)公司所提條件不矛盾,則企業(yè)可與保險(xiǎn)公司合作.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某印刷廠為了研究印刷單冊(cè)書籍的成本y(單位:元)與印刷冊(cè)數(shù)x(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
印刷冊(cè)數(shù)x(千冊(cè))23458
單冊(cè)成本y(元)3.22.421.91.7
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:${\hat y^{(1)}}=\frac{4}{x}+1.1$,方程乙:${\hat y^{(2)}}=\frac{6.4}{x^2}+1.6$.
(I)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到0.1);
印刷冊(cè)數(shù)x(千冊(cè))23458
單冊(cè)成本y(元)3.22.421.91.7
模型甲估計(jì)值${\hat y_i}^{(1)}$2.42.11.6
殘差${\hat e_i}^{(1)}$0-0.10.1
模型乙估計(jì)值${\hat y_i}^{(2)}$2.321.9
殘差${\hat e_i}^{(2)}$0.100
②分別計(jì)算模型甲與模型乙的殘差平方和Q1及Q2,并比較Q1,Q2的大小,判斷哪個(gè)模型擬合效果更好.
(II)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率0.7)或16千冊(cè)(概率0.3),若印刷廠以每冊(cè)5元的價(jià)格將書籍出售給訂貨商,估計(jì)印刷廠二次印刷8千冊(cè)還是16千冊(cè)能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx+x2
(Ⅰ)求函數(shù)h(x)=f(x)-3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案