15.某保險(xiǎn)公司針對一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金.保險(xiǎn)公司把企業(yè)的所有崗位共分為A、B、C三類工種,從事三類工種的人數(shù)分布比例如圖,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付頻率).
工種類別ABC
賠付頻率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
對于A、B、C三類工種職工每人每年保費(fèi)分別為a元,a元,b元,出險(xiǎn)后的賠償金額分別為100萬元,100萬元,50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.
(Ⅰ)若保險(xiǎn)公司要求利潤的期望不低于保費(fèi)的20%,試確定保費(fèi)a、b所要滿足的條件;
(Ⅱ)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇;
方案1:企業(yè)不與保險(xiǎn)公司合作,企業(yè)自行拿出與保險(xiǎn)提供的等額的賠償金額賠付給出險(xiǎn)職工;
方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的60%,職工個(gè)人負(fù)責(zé)保費(fèi)的40%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付.
若企業(yè)選擇方案2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費(fèi)a、b所要滿足的條件,并判斷企業(yè)是否可與保險(xiǎn)公司合作.(若企業(yè)選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險(xiǎn)公司所提條件不矛盾,則企業(yè)可與保險(xiǎn)公司合作.)

分析 (Ⅰ)設(shè)工種A,B,C職工的每份保單保險(xiǎn)公司的效益為隨機(jī)變量X,Y,Z,
寫出隨機(jī)變量X、Y、Z的分布列,計(jì)算保險(xiǎn)公司期望收益EX、EY、EZ;
根據(jù)要求列出不等式,求出a、b滿足的條件;
(Ⅱ)計(jì)算企業(yè)不與保險(xiǎn)公司合作時(shí)安全支出(即賠償金的期望值),
以及企業(yè)與保險(xiǎn)公司合作的安全支出(即保費(fèi)),比較大。

解答 解:(Ⅰ)設(shè)工種A,B,C職工的每份保單保險(xiǎn)公司的效益為隨機(jī)變量X,Y,Z,
則隨機(jī)變量X的分布列為:

Xaa-100×104
P$1-\frac{1}{{{{10}^5}}}$$\frac{1}{{{{10}^5}}}$
隨機(jī)變量Y的分布列為:
Yaa-100×104
P$1-\frac{2}{{{{10}^5}}}$$\frac{2}{{{{10}^5}}}$
隨機(jī)變量Z的分布列為:
Zbb-50×104
P$1-\frac{1}{{{{10}^4}}}$$\frac{1}{{{{10}^4}}}$
保險(xiǎn)公司期望收益為$EX=a×({1-\frac{1}{{{{10}^5}}}})$$+(a-100×{10^4})×({\frac{1}{{{{10}^5}}}})$=a-10,
$EY=a×({1-\frac{2}{{{{10}^5}}}})+(a-100×{10^4})×({\frac{2}{{{{10}^5}}}})$=a-20,
$EZ=b×({1-\frac{1}{{{{10}^4}}}})+(b-50×{10^4})×({\frac{1}{{{{10}^4}}}})$=b-50;
根據(jù)要求(a-10)×20000×0.6+(a-20)×20000×0.3+(b-50)×20000×0.1-10×104
≥(a×20000×0.6+a×20000×0.3+b×20000×0.1)×0.2,
解得9a+b≥275,
所以每張保單的保費(fèi)需要滿足9a+b≥275元;
(Ⅱ)若該企業(yè)不與保險(xiǎn)公司合作,則安全支出,
即賠償金的期望值為
20000×0.6×$\frac{1}{{10}^{5}}$×100×104+0.3×$\frac{2}{{10}^{5}}$×100×104+0.1×$\frac{1}{{10}^{4}}$×50×104=17×20000;
若該企業(yè)與保險(xiǎn)公司合作,則安全支出,
即保費(fèi)為20000×(0.6×a+0.3×a+0.1×b)×0.6=(0.9×a+0.1×b)×0.6×20000;
解得9a+b<283.33,
結(jié)果與(Ⅰ)不沖突,所以企業(yè)有可能與保險(xiǎn)公司合作.

點(diǎn)評 本題考查了離散型隨機(jī)變量的分布列與數(shù)學(xué)期望的計(jì)算問題,也考查了不等式的應(yīng)用問題,是綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線方程為y2=4x,點(diǎn)Q的坐標(biāo)為(2,3),P為拋物線上動點(diǎn),則點(diǎn)P到準(zhǔn)線的距離與到點(diǎn)Q的距離之和的最小值為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的函數(shù)f(x)滿足f(x+2)=2f(x),且當(dāng)x∈[2,4]時(shí),$f(x)=\left\{\begin{array}{l}-{x^2}+4x,2≤x≤3\\ \frac{{{x^2}+2}}{x},3<x≤4\end{array}\right.$,g(x)=ax+1,對?x1∈[-2,0],?x2∈[-2,1],使得g(x2)=f(x1),則實(shí)數(shù)a的取值范圍為(  )
A.$({-∞,-\frac{1}{8}})∪[{\frac{1}{8},+∞})$B.$[{-\frac{1}{4},0})∪({0,\frac{1}{8}}]$C.(0,8]D.$({-∞,-\frac{1}{4}}]∪[{\frac{1}{8},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$目標(biāo)函數(shù)z=2log4y-log2x,則z的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2mlnx-x,g(x)=$\frac{{3{e^x}-3}}{x^2}$(m∈R,e為自然對數(shù)的底數(shù)).
(1)試討論函數(shù)f(x)的極值情況;
(2)證明:當(dāng)m>1且x>0時(shí),總有g(shù)(x)+3f'(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知m為實(shí)數(shù),i為虛數(shù)單位,若復(fù)數(shù)z=$\frac{m+2i}{1+i}$,則“m>-2”是“復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(diǎn)在第四象限”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知Sn為數(shù)列{an}的前n項(xiàng)和,且滿足Sn-2an=n-4.
(1)證明{Sn-n+2}為等比數(shù)列;
(2)設(shè)數(shù)列{Sn}的前n項(xiàng)和Tn,比較Tn與2n+2-5n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.近代統(tǒng)計(jì)學(xué)的發(fā)展起源于二十世紀(jì)初,它是在概率論的基礎(chǔ)上發(fā)展起來的,統(tǒng)計(jì)性質(zhì)的工作可以追溯到遠(yuǎn)古的“結(jié)繩記事”和《二十四史》中大量的關(guān)于我人口、錢糧、水文、天文、地震等資料的記錄.近幾年,霧霾來襲,對某市該年11月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:表一
日期123456789101112131415
天氣
日期161718192021222324252627282930
天氣
由于此種情況某市政府為減少霧霾于次年采取了全年限行的政策.
下表是一個(gè)調(diào)査機(jī)構(gòu)對比以上兩年11月份(該年不限行30天、次年限行30天共60天)的調(diào)查結(jié)果:
表二
不限行限行總計(jì)
沒有霧霾a
有霧霾b
總計(jì)303060
(1)請由表一數(shù)據(jù)求a,b,并求在該年11月份任取一天,估計(jì)該市是晴天的概率;
(2)請用統(tǒng)計(jì)學(xué)原理計(jì)算若沒有90%的把握認(rèn)為霧霾與限行有關(guān)系,則限行時(shí)有多少天沒有霧霾?
(由于不能使用計(jì)算器,所以表中數(shù)據(jù)使用時(shí)四舍五入取整數(shù))
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}為等比數(shù)列,an>0,a1=2,2a2+a3=30.
(Ⅰ)求an;
(Ⅱ)若數(shù)列{bn}滿足,bn+1=bn+an,b1=a2,求b5=?

查看答案和解析>>

同步練習(xí)冊答案