已知Sn為數(shù)列{an}的前n項(xiàng)和,若Sn=2-an,則
S4
a6
=
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由數(shù)列遞推式得到數(shù)列為等比數(shù)列,求出前4項(xiàng)的和與第6項(xiàng),則答案可求.
解答: 解:由Sn=2-an,得
Sn-1=2-an-1(n≥2),
兩式作差得,an=
1
2
an-1
(n≥2),
由Sn=2-an,得a1=1.
∴數(shù)列{an}為等比數(shù)列.
a6=
1
25
S4=
1-
1
24
1-
1
2
=
15
8

S4
a6
=
15
8
1
32
=60

故答案為:60.
點(diǎn)評(píng):本題考查了等比關(guān)系的確定,考查了等比數(shù)列的前n項(xiàng)和,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù).
單位x(元)88.28.48.68.89
銷量y(件)908483807568
(1)若y與x的線性關(guān)系為:
y
=-20x+a,求a.
(2)預(yù)計(jì)在今后的銷售中,銷量y與單價(jià)仍然服從(1)中的有關(guān)系,且該產(chǎn)品的成本為4元/件,為了使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0≤α≤2π,sinα>
3
cosα,則α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|0<ax+2≤6},B={x|-1<2x≤4},若A⊆B,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=
4•2014x+2
2014x+1
+xcosx(-1≤x≤1),設(shè)f(x)的最大值是M,最小值是N,則M+N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,若a1=1,a4=2S3+1,則該數(shù)列的公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線f(x)=x+xlnx在點(diǎn)(1,f(1))處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log 
1
2
(5+4x-x2)的單調(diào)遞增區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l的方程為:x+sinαy+1=0(α∈R),則其傾斜角的范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案