在△ABC中,
AB
+
AC
=2
AM
,|
AM
|=1,點(diǎn)P在AM上且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
)=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)向量的加法運(yùn)算,由條件可得到M是BC邊的中點(diǎn),|
AP
|=
2
3
|
AM
=
2
3
,|
PM
|=
1
3
|
AM
|=
1
3
,接下來(lái)再根據(jù)數(shù)量積的運(yùn)算便可求出答案.
解答: 解:如下圖,根據(jù)條件,及向量的加法知道M是BC邊的中點(diǎn),|
AP
|=
2
3
,|
PM
|=
1
3
PB
+
PC
=2
PM
,所以
PA
•(
PB
+
PC
)=
PA
•(2
PM
)
=-
4
9

故答案為:-
4
9

點(diǎn)評(píng):考察向量的加法運(yùn)算和數(shù)量積的運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用適當(dāng)?shù)姆椒ū硎鞠铝屑希?br />(1)方程x(x2+2x+1)=0的解;
(2)不等式x-3>4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(1+sinx)(1+cosx)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z+i=2-i,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-3)3+x-1,若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a1)+f(a2)+…+f(a7)=14,則a1+a2+…+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是橢圓
x2
a2
+
y2
b2
=1上的任意一點(diǎn),F(xiàn)1、F2是它的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),有一動(dòng)點(diǎn)Q滿足
OQ
=
PF1
+
PF2
,則動(dòng)點(diǎn)Q的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)滿足對(duì)任意x∈R,均有f(1+x)=f(3-x)且f(x)=
m(1-x2),x∈[0,1]
x-1,x∈(1,2]
,若方程3f(x)=x恰有5個(gè)實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2|x-2|-x+5的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
3
=1(a>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),過(guò)左焦點(diǎn)F1作一漸近線的平行線l,則直線l與圓(x-c)2+y2=12的位置( 。
A、相切B、相交
C、相離D、與a有關(guān)

查看答案和解析>>

同步練習(xí)冊(cè)答案