已知函數(shù)f(x)=(x-3)3+x-1,若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a1)+f(a2)+…+f(a7)=14,則a1+a2+…+a7=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由題意可得[(a1-3)3+a1-3]+[(a2-3)3+a2-3]+…+[(a7-3)3+a7-3]=0,再利用等差數(shù)列的性質(zhì)求得a4=3,從而求得a1+a2+…+a7 的值.
解答: 解:由題意可得,[(a1-3)3+a1-1]+[(a2-3)3+a2-1]+…+[(a7-3)3+a7-1]=14,
∴[(a1-3)3+a1-3]+[(a2-3)3+a2-3]+…+[(a7-3)3+a7-3]=0,
 根據(jù)等差數(shù)列的性質(zhì)可得 (a4-3-3d)3 +(a4-3-2d)3 +…+(a4-3+3d)3+7(a4-3)=0,
(a4-3-3d)3 +(a4-3+3d)3 +(a4-3-2d)3 +(a4-3+2d)3 +(a4-3+d)3 +(a4-3+d)3
(a4-3)3 +7(a4-3)=0,
(a4-3)[7(a4-3)3 +84d2+7]=0,∴a4-3=0,即a4=3.
∴a1+a2+…+a7=7a4=21,
故答案為:21.
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2alnx(a∈R且a≠0)
(1)當(dāng)實(shí)數(shù)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的圓弧長度等于該圓內(nèi)接正方形的邊長,則該圓圓心角的弧度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<t≤
1
4
,那么
1
t
-t的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為CC1的中點(diǎn),則直線DE與平面A1BC1的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
+
AC
=2
AM
,|
AM
|=1,點(diǎn)P在AM上且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=2x+m過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有交點(diǎn),則該雙曲線的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把地球看作半徑為R的球,地球上的A、B兩地都在北緯45°上,A、B兩地的球面距離為
πR
3
,A在東經(jīng)20°,則B點(diǎn)的位置位于北緯
 
,東經(jīng)
 
的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角三角形中,角A、B所對的邊分別為a、b,若2asinB=
2
b,則角A等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
4
3
4
π

查看答案和解析>>

同步練習(xí)冊答案