函數(shù)f(x)=2|x-2|-x+5的最小值為
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:確定函數(shù)f(x)在區(qū)間(-∞,2)上單調(diào)遞減,在區(qū)間[2,+∞)上單調(diào)遞增,可得函數(shù)f(x)=2|x-2|-x+5的最小值.
解答: 解:f(x)=2|x-2|-x+5=
x+1,(x≥2) 
-3x+9,(x<2)

顯然,函數(shù)f(x)在區(qū)間(-∞,2)上單調(diào)遞減,在區(qū)間[2,+∞)上單調(diào)遞增,
所以函數(shù)f(x)的最小值為f(2)=3.
故答案為:3.
點(diǎn)評(píng):本題主要考查帶有絕對(duì)值的函數(shù)的值域的求法,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

y=xex+1的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
+
AC
=2
AM
,|
AM
|=1,點(diǎn)P在AM上且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=4x上一點(diǎn)P到y(tǒng)軸的距離為3,若點(diǎn)P到拋物線的焦點(diǎn)F的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把地球看作半徑為R的球,地球上的A、B兩地都在北緯45°上,A、B兩地的球面距離為
πR
3
,A在東經(jīng)20°,則B點(diǎn)的位置位于北緯
 
,東經(jīng)
 
的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一元二次方程f(x)=ax2-(a+2)x+1,且函數(shù)f(x)在(-2,-1)上恰好有零點(diǎn),則不等式f(x)<1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是離心率為
3
的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),P是雙曲線上一點(diǎn),且|PF1|+|PF2|=6a,則△PF1F2最小內(nèi)角的大小是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>
5
2
時(shí),則f(x)=2x+
1
2x-5
( 。
A、有最小值3
B、有最大值3
C、有最小值7
D、有最大值7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=an-12-1(n>2,n∈N*),則a3的值為( 。
A、0
B、-1
C、1
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案