分析 (Ⅰ)由已知及正弦定理可得2sinAsinC=sinCcosA,由于sinC≠0,可求tanA=$\frac{1}{3}$,且A為銳角,利用同角三角函數基本關系式可求sinA的值.
(Ⅱ)利用同角三角函數基本關系式可求可得cosA,利用兩角和的正弦函數公式可求sinC,由正弦定理可得c=2$\sqrt{2}$a,進而利用三角形面積公式即可計算得解.
解答 (本題滿分為14分)
(Ⅰ)∵3asinC=ccosA.
∴2sinAsinC=sinCcosA,…2分
∵sinC≠0,
∴tanA=$\frac{1}{3}$,且A為銳角,…4分
∴sinA=$\frac{\sqrt{10}}{10}$…7分
(Ⅱ)由(Ⅰ)可得cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{3\sqrt{10}}{10}$,
∴sinC=sin(A+B)=sin(A+$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,
由正弦定理可得$\frac{a}{c}=\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{4}$,c=2$\sqrt{2}$a,
∵S=$\frac{1}{2}$acsinB=$\frac{1}{2}a×2\sqrt{2}a×\frac{\sqrt{2}}{2}$=a2=9,
∴a=3.
點評 本題主要考查了正弦定理,同角三角函數基本關系式,兩角和的正弦函數公式,三角形面積公式在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
分組(單位:歲) | 頻數 | 頻率 |
[20,25) | 5 | 0.050 |
[25,30) | ① | 0.200 |
[30,35) | 35 | ② |
[35,40) | 30 | 0.300 |
[40,45) | 10 | 0.100 |
合計 | 100 | 1.00 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 9 | B. | 27 | C. | 32 | D. | 103 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [5,+∞) | B. | (5,+∞) | C. | (-∞,5] | D. | (-∞,5) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com