19.在某項(xiàng)調(diào)查活動(dòng)中,調(diào)查部門從某單位500名職工中隨機(jī)抽出100名職工,得職工年齡頻率分布表.
分組(單位:歲)頻數(shù)頻率
[20,25)50.050
[25,30)0.200
[30,35)35
[35,40)300.300
[40,45)100.100
合計(jì)1001.00
(Ⅰ)頻率分布表中的①、②位置應(yīng)填什么數(shù)據(jù)?并在答題紙中補(bǔ)全頻率分布直方圖,再根據(jù)頻率分布直方圖估計(jì)這500名職工中年齡在[30,35)歲的人數(shù);
(Ⅱ)在抽出的100名職工中按年齡再采用分層抽樣法抽取20人參加社會(huì)公益活動(dòng),其中選取2名職工擔(dān)任領(lǐng)隊(duì)工作,記這2名職工中“年齡低于30歲”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

分析 (Ⅰ)利用已知條件真假在①處填20,②處填0.350;補(bǔ)全頻率分布直方圖.求出500名職工中年齡在[30,35)的人數(shù).
(Ⅱ)用分層抽樣的方法,從中選取20人,則其中“年齡低于30歲”的有5人,“年齡不低于30歲“的有15人.故X的可能取值為0,1,2;求出概率,得到分布列,然后求解期望即可.

解答 解:(Ⅰ)①處填20,②處填0.350;…(2分)
補(bǔ)全頻率分布直方圖如圖所示:

…(4分)
500名職工中年齡在[30,35)的人數(shù)為0.35×500=175人,…(6分)
(Ⅱ)用分層抽樣的方法,從中選取20人,則其中“年齡低于30歲”的有5人,“年齡不低于30歲“的有15人.故X的可能取值為0,1,2;$P(X=0)=\frac{{C_{15}^2}}{{C_{20}^2}}=\frac{42}{76}=\frac{21}{38}$.$P(X=1)=\frac{{C_{15}^1C_5^1}}{{C_{20}^2}}=\frac{30}{76}=\frac{15}{38}$.$P(X=2)=\frac{C_5^2}{{C_{20}^2}}=\frac{4}{76}=\frac{1}{19}$…(9分)
所以X的分布列為

X012
P$\frac{21}{38}$$\frac{15}{38}$$\frac{1}{19}$
…(10分)
所以$E(X)=0×\frac{21}{38}+1×\frac{15}{38}+2×\frac{1}{19}=\frac{1}{2}$…(12分)

點(diǎn)評(píng) 本題考查分層抽樣,離散型隨機(jī)變量的分布列以及期望的求法,頻率分布直方圖的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=$\frac{-4+i}{-i}$的共軛復(fù)數(shù)是( 。
A.-1+4iB.-1-4iC.1+4iD.1-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,A=2B.
(I )若sinB=$\frac{\sqrt{5}}{5}$,求cosC的值;
(II)若C為鈍角,求$\frac{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某省組織了一次高考模擬考試,該省教育部門抽取了1000名考生的數(shù)學(xué)考試成績(jī),并繪制成頻率分布直方圖如圖所示.
(Ⅰ)求樣本中數(shù)學(xué)成績(jī)?cè)?5分以上(含95分)的學(xué)生人數(shù);
(Ⅱ)已知本次模擬考試全省考生的數(shù)學(xué)成績(jī)X~N(μ,σ2),其中μ近似為樣本的平均數(shù),σ2近似為樣本方差,試估計(jì)該省的所有考生中數(shù)學(xué)成績(jī)介于100~138.2分的概率;
(Ⅲ)以頻率估計(jì)概率,若從該省所有考生中隨機(jī)抽取4人,記這4人中成績(jī)?cè)赱105,125)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):$\sqrt{356}$≈18.9,$\sqrt{366}$≈19.1,$\sqrt{376}$≈19.4.
若Z∽N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.9826,P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B=$\frac{π}{4}$,△ABC的面積為9,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{|x-y|≤1}\\{|x+y|≤3}\end{array}\right.$,則|3x+y|的最大值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在正項(xiàng)等比數(shù)列{an}中,a1008a1010=$\frac{1}{100}$,則lga1+lga2+…+lga2017=( 。
A.-2016B.-2017C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p,q,“¬p為假”是“p∨q為真”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=si{n}^{2}α}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2:ρcos(θ-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,C3:ρ=2sinθ
(1)求曲線C1與C2的交點(diǎn)M在直角坐標(biāo)系xoy中的坐標(biāo);
(2)設(shè)點(diǎn)A,B分別為曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案