【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計算可得BF=DE,最后利用線面平行的判定定理,可得結(jié)果.
(2)利用建系的方法,可得平面ABF的一個法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.
(1)因為DE⊥平面ABCD,所以DEAD,
因為AD=4,AE=5,DE=3,同理BF=3,
又DE⊥平面ABCD,BF⊥平面ABCD,
所以DE//BF,又BF=DE,
所以平行四邊形BEDF,故DF//BE,
因為BE平面BCE,DF平面BCE
所以DF//平面BCE;
(2)建立如圖空間直角坐標系,
則D(0,0,0),A(4,0,0),
C(0,4,0),F(4,3,﹣3),
,
設(shè)平面CDF的法向量為,
由,令x=3,得,
易知平面ABF的一個法向量為,
所以,
故.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和的直角坐標方程;
(2)設(shè)是曲線上一點,此時參數(shù),將射線繞原點逆時針旋轉(zhuǎn)交曲線于點,記曲線的上頂點為點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性并指出相應單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,過點的動直線交拋物線于,兩點
(1)當恰為的中點時,求直線的方程;
(2)拋物線上是否存在一個定點,使得以弦為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)寫出曲線,的極坐標方程;
(2)在極坐標系中,已知與,的公共點分別為,,,當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且).
(1)若的定義域為,判斷的單調(diào)性,并加以說明;
(2)當時,是否存在,,使得在區(qū)間上的值域為,若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),,.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個零點,().
(i)求的取值范圍;
(ii)求證:隨著的增大而增大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),前項和滿足;數(shù)列是等比數(shù)列,前項和為.
(1)求數(shù)列的通項公式;
(2)已知等比數(shù)列滿足,,,求數(shù)列前項和為;
(3)若,且等比數(shù)列的公比,若存在,使得,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的右焦點為F(1,0),且點P在橢圓C上,O為坐標原點.
(1)求橢圓C的標準方程;
(2)設(shè)過定點T(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角,求直線l的斜率k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com