【題目】已知橢圓C:(a>b>0)的右焦點為F(1,0),且點P在橢圓C上,O為坐標原點.
(1)求橢圓C的標準方程;
(2)設(shè)過定點T(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角,求直線l的斜率k的取值范圍.
【答案】(1)+=1(2)∪
【解析】
(1)由c=1得a2=b2+1,再代入P點坐標可求得a,b;
(2)設(shè)直線l的方程為y=kx+2,A(x1,y1),B(x2,y2),直線方程與橢圓方程聯(lián)立消元得的一元二次方程,其判別式需大于0,由韋達定理得,條件∠AOB為銳角對應(yīng),代入后可求得的范圍.
(1)由題意得c=1,所以a2=b2+1,①
又點P在橢圓C上,所以+=1,②
由①②可解得a2=4,b2=3,
所以橢圓C的標準方程為+=1.
(2)設(shè)直線l的方程為y=kx+2,A(x1,y1),B(x2,y2),由得(4k2+3)x2+16kx+4=0,
因為Δ=16(12k2-3)>0,所以k2>,則x1+x2=,x1x2=.
因為∠AOB為銳角,所以·>0,即x1x2+y1y2>0,所以x1x2+(kx1+2)(kx2+2)>0,
所以(1+k2)x1x2+2k(x1+x2)+4>0,即(1+k2)·+2k·+4>0,
解得k2<.又k2>,所以<k2<,解得-<k<-或<k<.
所以直線l的斜率k的取值范圍為∪
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動點.
(1)求證:BD⊥AE
(2)若點E為PC的中點,求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n為兩條不同的直線,,為兩個不同的平面,則下列命題中正確的有
,,, ,
,, ,
A. 0個 B. 1個 C. 2個 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家創(chuàng)新指數(shù)是反映一個國家科學(xué)技術(shù)和創(chuàng)新競爭力的綜合指數(shù).對國家創(chuàng)新指數(shù)得分排名前40的國家的有關(guān)數(shù)據(jù)進行收集.整理、描述和分析.下面給出了部分信息:
a.國家創(chuàng)新指數(shù)得分的頻率分布直方圖(數(shù)據(jù)分成7組:,,,,,,);
b.國家創(chuàng)新指數(shù)得分在這一組的是:61.7,62.4,63.6,65.9,66.4,68.5,69.1,69.3,69.5.
c.40個國家的人均國內(nèi)生產(chǎn)總值(萬美元)和國家創(chuàng)新指數(shù)得分情況統(tǒng)計圖:
d.中國的國家創(chuàng)新指數(shù)得分為69.5,人均國內(nèi)生產(chǎn)總值9960美元.
(以上數(shù)據(jù)來源于《國家創(chuàng)新指數(shù)報告(2018)》)
根據(jù)以上信息,解答下列問題:
(1)中國的國家創(chuàng)新指數(shù)得分排名世界第幾?
(2)是否有99.9%的把握認為“人均國內(nèi)生產(chǎn)總值影響國家創(chuàng)新指數(shù)得分”?
(3)用(1)(2)得到的結(jié)論,結(jié)合所學(xué)知識.合理解釋d中客觀存在的數(shù)據(jù).
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,射線的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為.一只小蟲從點沿射線向上以單位/min的速度爬行
(1)以小蟲爬行時間為參數(shù),寫出射線的參數(shù)方程;
(2)求小蟲在曲線內(nèi)部逗留的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,,,.
(1)求證:平面平面;
(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com