17.(本小題滿分14分)
如圖,在正四棱柱ABCD—A1B1C1D1中,AA1=,AB=1,E是DD1的中點。
(Ⅰ)求證:B1D⊥AE;
(Ⅱ)求二面角C—AE—D的大小。 (Ⅲ)求
二面角C—AE—D的大小。
解法一:
(1)證明:
連結(jié).
是正四棱柱,
平面,
是在平面上的射影,
,
根據(jù)三垂線定理得,. ……………5分
(II)解:
設,連結(jié).
平面,且,
根據(jù)三垂線定理得,又,
是二面角的平面角. ……………9分
在中,由,得°. ……………12分
°-°=°,
即二面角的大小是°. ……………13分
解法二:
是正四棱柱,
、、兩兩互相垂直.
如圖,以為原點,直線,,分別為軸,
軸,軸,建立空間直角坐標系. ……………1分
,,,,. ……………3分
(I)證明:
, ,
,
. ……………6分
(II)解:
連結(jié),設,連結(jié).
平面,且,
,
是二面角的平面角. ………9分
底面是正方形 , ,
,
, ……………12分
二面角的大小是°. ……………13分
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com