已知A,B,C三點的坐標分別為A(3,0),B(0,3),C(cosα,sinα),α∈(
π
2
,
2
).
(Ⅰ)若|
AC
|=|
BC
|,求角α的值;
(Ⅱ)求y=
1
3
(3sinαcosα-
AC
BC
+1)的范圍.
考點:平面向量數(shù)量積的運算,正弦函數(shù)的定義域和值域
專題:綜合題,平面向量及應用
分析:(Ⅰ)用坐標表示
AC
、
BC
,由|
AC
|=|
BC
|,求出角α的值;
(Ⅱ)由y=
1
3
(3sinαcosα-
AC
BC
+1)=sinα+cosα+sinαcosα,設sinα+cosα=t,求出t的取值范圍,得sinαcosα=
t2-1
2
,把函數(shù)化為y=f(t),求出y的取值范圍即可.
解答: 解:(Ⅰ)∵
AC
=(cosα-3,sinα),
BC
=(cosα,sinα-3),
∴|
AC
|=
(cosα-3)2+sin2α
=
10-6cosα
,
|
BC
|=
cos2α+(sinα-3)2
=
10-6sinα

∵|
AC
|=|
BC
|,
∴sinα=cosα;
又α∈(
π
2
,
2
),∴α=
4
;
(Ⅱ)∵y=
1
3
(3sinαcosα-
AC
BC
+1)=sinα+cosα+sinαcosα,
設sinα+cosα=t,
∴t=
2
sin(α+
π
4
),且α∈(
π
2
2
),
∴α+
π
4
∈(
4
,
4
),
∴sin(α+
π
4
)∈[-1,
2
2
),
∴t∈[-
2
,1),
又sinαcosα=
t2-1
2
,
∴y=t+
t2-1
2
=
1
2
t2+t-
1
2
=
1
2
(t+1)2-1,
∴-1≤y<1;
∴函數(shù)y的取值范圍是[-1,1).
點評:本題考查了平面向量的應用問題,解題時應結(jié)合三角函數(shù)的知識進行解答,是綜合性題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)學拓展課上,老師定義了一種運算“*”:對于n∈N,滿足以下運算性質(zhì):①2*2=1;②(2n+2)*2=(2n*2)+3.則1020*2的數(shù)值為( 。
A、1532B、1533
C、1528D、1536

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第四象限角,且f(α)=
sin(π-α)cos(2π-α)
tan(
π
2
-α)sin(-π-α)

(1)若cos(α+
π
2
)=
1
5
,求f(α)的值;
(2)α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一半徑為2
2
米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪按逆時針方向旋轉(zhuǎn),每分鐘轉(zhuǎn)動5圈,現(xiàn)在當水輪上點P從水中浮現(xiàn)時,(圖中點P0)開始計時,試探究:
(1)OP旋轉(zhuǎn)的角速度ω是多少(單位:弧度/秒)
(2)建立如圖所示的直角坐標系,設嗲P距離水面的高度z(米)與時間t(秒)的函數(shù)關系為z=f(t)=Asin(ωx+φ)+2,其中A>0,而φ(-
π
2
<φ<0)是以Ox為始邊,OP0為終邊的角,請寫出函數(shù)f(t)的解析式
(3)點P第二次到達最高點需要的時間是多少秒?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圖1給出一個用“當型”循環(huán)語句編寫的程序:
(1)該程序的算法功能是求式子
 
的值.
(2)用“直到型”循環(huán)語句的形式寫出該程序,請完成圖2程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項公式;
(2)令bn=
4
anan+1
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-2lnx(a∈R).
(Ⅰ)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若a>0,求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)設函數(shù)g(x)=-
a
x
.若至少存在一個x0∈[1,e],使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=(a+1)+(a-1)i,z2=1+2ai,(a∈R,i是虛數(shù)單位).
(1)若復數(shù)z1-z2在復平面上對應點落在直線y=x上,求實數(shù)a的值;
(2)若復數(shù)z1是實系數(shù)一元二次方程x2+x+m=0的根,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二階矩陣M有特征值λ=3及對應的一個特征向量
e1
=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(3,0),求矩陣M.

查看答案和解析>>

同步練習冊答案