設(shè)函數(shù)f(x)=x3-3x2+2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)-m在區(qū)間[-2,4]上有三個零點,求實數(shù)m的取值范圍.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù)f′(x),在定義域內(nèi)解不等式f′(x)>0,f′(x)<0可求;
(2)求得f(x)的極值,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:(1)由f(x)=x3-3x2+2,得f′(x)=3x2-6x=3x(x-2),
當f′(x)>0時,解得x<0或x>2;
當f′(x)<0時,解得0<x<2.
故函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,0),(2+∞));
單調(diào)遞減區(qū)間是(0,2).
(2)由(1)知函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,0),(2+∞));
單調(diào)遞減區(qū)間是(0,2).
∴函數(shù)在[-2,0)上遞增,在[0,2]上遞減,在[2,4]上遞增,
且函數(shù)在x=0處取得極大值f(0)=2,在x=2處取得極小值f(2)=-2,
∵f(4)=18,f(-2)=-18,
若函數(shù)y=f(x)-m在區(qū)間[-2,4]上有三個零點,
等價為f(x)=m有三個不同的根
則有-2<m<2,故實數(shù)m的取值范圍(-2,2).
點評:該題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、函數(shù)的零點,考查不等式的求解,考查學生綜合運用知識解決問題的能力
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在⊙O中,直徑AB,CD互相垂直,BE切⊙O于B,且BE=BC,CE交AB于F,交⊙O于M,連結(jié)MO并延長,交⊙O于N,則下列結(jié)論中,正確的是(  )
A、CF=FM
B、OF=FB
C、弧BM的度數(shù)為22.5°
D、BC∥MN

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
,
b
c
均為單位向量,且|
a
+
b
|=1,則(
a
-
b
)•
c
的取值范圍是( 。
A、[0,1]
B、[-1,1]
C、[-
3
,
3
]
D、[0,
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,鐵路線上AB段長100千米,工廠C到鐵路的距離CA為20千米.現(xiàn)要在AB上某一點D處,向C修一條公路,已知鐵路每噸千米的運費與公路每噸千米的運費之比為3:5.為了使原料從供應(yīng)站B運到工廠C的運費最少,D點應(yīng)選在何處?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E為AD的中點,M是棱PC上的點,PA=PD=AD=2BC=2,CD=
3

(1)求證:PE∥平面BDM; 
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a,設(shè)SB的中點為M,DM⊥MC.
(1)求證:DM⊥平面SBC;
(2)求四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

攀枝花市歡樂陽光節(jié)是攀枝花市的一次向外界展示攀枝花的盛會,為了搞好接待工作,組委會在某大學招募了8名男志愿者和5名女志愿者(分成甲乙兩組),招募時志愿者的個人綜合素質(zhì)測評成績?nèi)鐖D所示.
(Ⅰ)問男志愿者和女志愿者的平均個人綜合素質(zhì)測評成績哪個更高?
(Ⅱ)現(xiàn)從甲乙兩組個人綜合素質(zhì)測評為優(yōu)秀(成績在80分以上為優(yōu)秀)
的志愿者中隨機抽取2名志愿者負責接待外賓,要求2人中至少有一名女志
愿者的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,|
b
|=3,若
a
b
的夾角為θ=120°,求
(1)
a
b

(2)求|2
a
+3
b
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2-3x+3)ex,x∈[-2,a],a>-2,其中e是自然對數(shù)的底數(shù).
(1)若a<1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求證:f(a)>
13
e2
;
(3)對于定義域為D的函數(shù)y=g(x),如果存在區(qū)間[m,n]⊆D,使得x∈[m,n]時,y=g(x)的值域是[m,n],則稱[m,n]是該函數(shù)y=g(x)的“保值區(qū)間”.設(shè)h(x)=f(x)+(x-2)ex,x∈(1,+∞),問函數(shù)y=h(x)是否存在“保值區(qū)間”?若存在,請求出一個“保值區(qū)間”; 若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案