攀枝花市歡樂陽(yáng)光節(jié)是攀枝花市的一次向外界展示攀枝花的盛會(huì),為了搞好接待工作,組委會(huì)在某大學(xué)招募了8名男志愿者和5名女志愿者(分成甲乙兩組),招募時(shí)志愿者的個(gè)人綜合素質(zhì)測(cè)評(píng)成績(jī)?nèi)鐖D所示.
(Ⅰ)問男志愿者和女志愿者的平均個(gè)人綜合素質(zhì)測(cè)評(píng)成績(jī)哪個(gè)更高?
(Ⅱ)現(xiàn)從甲乙兩組個(gè)人綜合素質(zhì)測(cè)評(píng)為優(yōu)秀(成績(jī)?cè)?0分以上為優(yōu)秀)
的志愿者中隨機(jī)抽取2名志愿者負(fù)責(zé)接待外賓,要求2人中至少有一名女志
愿者的概率.
考點(diǎn):互斥事件的概率加法公式,莖葉圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)首先根據(jù)莖葉圖,分別找出每名男志愿者和女志愿者的得分;然后根據(jù)平均數(shù)的求法,分別求出男志愿者和女志愿者的平均個(gè)人得分;最后比較大小,判斷出綜合素質(zhì)測(cè)評(píng)成績(jī)更高的是哪個(gè)即可;
(Ⅱ)由莖葉圖知:甲乙兩組個(gè)人綜合素質(zhì)測(cè)評(píng)為優(yōu)秀(成績(jī)?cè)?0分以上為優(yōu)秀)的志愿者一共有6名,其中男4名,女2名,用1減去兩人全是男志愿者的概率,求出2人中至少有一名女志愿者的概率即可.
解答: 解:(Ⅰ)因?yàn)?span id="g2jkxuz" class="MathJye">
.
x
=
1
8
(67+68+72+79+84+88+90+92)=80,
.
x
=
1
5
(66+76+79+89+95)=81
,80<81,
所以
.
x
.
x
,
即女志愿者的平均個(gè)人綜合素質(zhì)測(cè)評(píng)成績(jī)更高.
(Ⅱ)由莖葉圖知:甲乙兩組個(gè)人綜合素質(zhì)測(cè)評(píng)為優(yōu)秀(成績(jī)?cè)?0分以上為優(yōu)秀)的志愿者一共有6名,
其中男4名,女2名,
因此2人中至少有一名女志愿者的概率是:
P=1-
C
2
4
C
2
6
=1-
2
5
=
3
5
點(diǎn)評(píng):此題主要考查了概率的求法,以及平均數(shù)的求法的運(yùn)用,考查了莖葉圖的知識(shí),還考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=2-
4
5
i(i是虛數(shù)單位)的虛部是( 。
A、
4
5
i
B、-
4
5
i
C、
4
5
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex,其中e為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)g(x)=f(x)-3x的零點(diǎn)個(gè)數(shù).
(2)記曲線y=f(x)在其上一點(diǎn)P(x0,f(x0))(其中x0<0)處的切線為l,l與坐標(biāo)軸所圍成的三角形的面積為S.求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-3x2+2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)-m在區(qū)間[-2,4]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓A:(x+3)2+y2=100,圓A內(nèi)一定點(diǎn)B(3,0),動(dòng)圓P過B點(diǎn)且與圓A內(nèi)切,求圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S3,S9,S6成等差數(shù)列,試求{an}的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知F1,F(xiàn)2分別是橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),橢圓G與拋物線y2=-8x有一個(gè)公共的焦點(diǎn),且過點(diǎn)(-2,
2
).
(1)求橢圓G的方程;
(2)設(shè)直線l與橢圓G相交于A、B兩點(diǎn),若
OA
OB
(O為坐標(biāo)原點(diǎn)),試探討直線l與圖形|x|+|y|≤
2
6
3
的公共點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐S-ABCD,底面為正方形,SA⊥底面ABCD,AB=AS=a,
M,N分別為AB,AS中點(diǎn).
(1)求證:BC⊥平面SAB;
(2)求證:MN∥平面SAD;
(3)求四棱錐S-ABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-A′B′C′中,底面是以角∠ABC為直角的等腰直角三角形,AC=2a,BB′=3a,D是A′C′的中點(diǎn).
(1)證明:A′B∥平面B′CD;
(2)在側(cè)棱AA′上是否存在點(diǎn)E,使CE⊥平面B′D E.

查看答案和解析>>

同步練習(xí)冊(cè)答案