如圖,在三棱錐S—ABC中,SC⊥平面ABC,點(diǎn)P、M分別是SC和SB的中點(diǎn),設(shè)PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°。
(I)求證:平面MAP⊥平面SAC。
(II)求二面角M—AC—B的平面角的正切值;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知F是雙曲線(a>0,b>0)的左焦點(diǎn),E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),點(diǎn)在以為直徑的圓內(nèi),則該雙曲線的離心率的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0)的右焦點(diǎn)為,離心率為e.
(1)若e=,求橢圓的方程;
(2)設(shè)直線y=kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段,的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且<e≤,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知△ABC的頂點(diǎn)B、C在橢圓上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知直線:4x-3y+6=0和直線:,拋物線上一動(dòng)點(diǎn)P到直線l1和直線的距離之和的最小值是( )
A.2 B.3 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com