已知扇形的圓心角為
π
4
,半徑為2
2
,則扇形的面積為
 
考點:扇形面積公式
專題:三角函數(shù)的求值
分析:利用S扇形=
1
2
α•R2
即可得出.
解答: 解:S扇形=
1
2
α•R2
=
1
2
×
π
4
×(2
2
)2
=π.
故答案為:π.
點評:本題考查了扇形的面積計算公式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin2x-4sinx+5的值域為(  )
A、[1,+∞]
B、(1,+∞)
C、[2,10]
D、[1,10]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
3
5
,α∈(0,
π
2
),sinβ=-
5
13
,β∈(π,
2
),求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-
1
2
x2+ax-1,其中實數(shù)a≠0
(1)討論函數(shù)f(x)的單調(diào)性
(2)若x∈(1,+∞)時,函數(shù)y=f(x)的圖象在直線y=ax-1的下方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的參數(shù)方程為
x=
t2-4
t2+4
y=
8t
t2+4
(t為參數(shù)).
(1)求曲線C的普通方程;
(2)過點P(0,1)的直線l與曲線C交于A,B兩點,求|PA|•|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l恒過定點(-1,-1),圓C的方程為x2+y2+2ax-2ay+a2=0(a≠0).
(1)如果a=2時,直線l被圓C截得的弦長為2
3
,求直線l的方程;
(2)如果圓C上存在不同的兩點到原點的距離都等于1,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
an+3
,(n∈N*
(1)求數(shù)列{an}的通項公式an,
(2)若數(shù)列{bn}滿足bn=(3n-1)
n
2n
an,數(shù)列{bn}的前n項和為Tn,若不等式(-1)nλ<Tn對一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:x2-
y2
3
=1(x>0),A(-1,0),F(xiàn)(2,0)
(1)設(shè)M為曲線C上x軸上方任一點,求證:∠MFA=2∠MAF;
(2)若曲線C上存在兩點C,D關(guān)于直線l:y=-
1
2
x+b對稱,求實數(shù)b的取值范圍;
(3)在(2)的條件下,是否存在過C、A、D、F的圓,且該圓的半徑為
3
2
.如果存在,求出這個圓的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①.若函數(shù)y=f(x)在區(qū)間(a,b)上單調(diào)遞增,則f′(x)>0;
②.若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,則它在該區(qū)間上必有最值;
③.若函數(shù)y=f(x)和y=g(x)同時在x=a處取得極大值,則F(x)=f(x)+g(x)在x=a處不一定取得極大值;
④.若0<x<
π
2
,則tanx>x+
x3
3

其中為真命題的有
 
.(填相應的序號)

查看答案和解析>>

同步練習冊答案